
SCHWERPUNKTBEITRAG

https://doi.org/10.1007/s13222-025-00516-6
Datenbank-Spektrum (2025) 25:187–195

Opinion Pieces of the BTW 2025Workshop On Advances in Cloud Data
Management

Thomas Bodner1 · Alexander Böhm2 · Maximilian Böther3 · Ana Klimovic3 · Dominik Durner4 · Martin Grund5 ·
Andreas Kipf6 · Ismail Oukid7 · Berni Schiefer7 · Panos Parchas8 · Hinnerk Gildhoff8 · Philipp Unterbrunner9 ·
Tomas Karnagel9 · Jana Giceva10 · Tobias Ziegler10 · Martin Hentschel11

Received: 19 July 2025 / Accepted: 8 September 2025 / Published online: 18 November 2025
© The Author(s) 2025, corrected publication 2025

Abstract
The BTW 2025 Workshop on Advances in Cloud Data Management explored recent developments and future directions
in cloud data management. Speakers discussed advancements in data warehousing, query optimization, and data pipeline
architectures to enhance performance and efficiency in cloud environments. The workshop also addressed challenges in
managing data for modern software architectures, such as event-driven microservices, and the complexities of decomposing
database systems. Additionally, presentations covered the potential of serverless computing for cost-efficient data processing
and the importance of fine-grained access control for data governance.

� Thomas Bodner
thomas.bodner@hpi.de

Alexander Böhm
alexander.boehm@sap.com

Maximilian Böther
mboether@ethz.ch

Ana Klimovic
aklimovic@ethz.ch

Dominik Durner
dominik@cedardb.com

Martin Grund
martin@databricks.com

Andreas Kipf
andreas.kipf@utn.de

Ismail Oukid
ismail.oukid@snowflake.com

Berni Schiefer
berni.schiefer@snowflake.com

Panos Parchas
parchp@amazon.de

Hinnerk Gildhoff
hinnerk@amazon.de

Philipp Unterbrunner
ptu@observeinc.com

Tomas Karnagel
tomas@observeinc.com

Jana Giceva
jana.giceva@tum.de

Tobias Ziegler
t.ziegler@tum.de

Martin Hentschel
mhent@itu.dk

1 Hasso Plattner Institute, University of Potsdam, Potsdam,
Germany

2 SAP, Walldorf, Germany

3 ETH Zürich, Zürich, Switzerland

4 CedarDB, München, Germany

5 Databricks, Berlin, Germany

6 TU Nürnberg, Nürnberg, Germany

7 Snowflake Inc., Menlo Park, CA, USA

8 Amazon Web Services, Berlin, Germany

9 Observe, Inc., San Mateo, CA, USA

10 TU München, München, Germany

11 IT University of Copenhagen, Copenhagen, Denmark

K

https://doi.org/10.1007/s13222-025-00516-6
http://crossmark.crossref.org/dialog/?doi=10.1007/s13222-025-00516-6&domain=pdf
http://orcid.org/0009-0004-8528-4168

188 Datenbank-Spektrum (2025) 25:187–195

For this special issue of Datenbank-Spektrum, we asked the speakers of the workshop to extend the abstracts of their
talks by, for example, including their opinions on the future of data management systems in the cloud. Consequently, we
titled this collection of articles Opinion Pieces. These articles are not peer-reviewed and present the authors’ individual
viewpoints. Nine speakers submitted articles for publication. Articles are sorted by the last name of the first author. For
editorial reasons, there is only one bibliography instead of individual ones, which we would have preferred.
We hope that the idea of publishing opinion pieces will receive positive attention and that this style of submission may be
replicated in other areas of the spectrum of databases.
We want to thank all speakers again for delivering highly interesting talks at the BTW workshop and for submitting these
opinion pieces for publication.
Jana Giceva, Tobias Ziegler, Martin Hentschel, editors

1 Elasticity in Cloud Data Processing:
a Matter of Infrastructure Economics
and Architectural Implications (Thomas
Bodner)

Analytical data products, such as business intelligence re-
ports and machine learning models, require processing large
amounts of data using extensive computational resources.
Traditionally, provisioning resources involves high upfront
expenses. The public cloud, as a shorter-term provisioning
model, provides cost-effective access to pools of resources,
and, as a result, is the standard for deploying data process-
ing systems today. Recently, serverless cloud computing
embodies resource pools that are highly elastic. This elas-
ticity has the potential to make cloud-based systems easier
to use and more cost-efficient, avoiding complex resource
management and under-utilization.

Motivated by the potential impact that serverless cloud
infrastructure has on data processing systems, recent work
explores the use of this category of highly elastic cloud re-
sources. Evaluation of the performance and cost character-
istics of commercial public serverless infrastructure reveals
valuable insights. Through comprehensive experiments in-
volving various compute and storage services, in addition
to end-to-end analytical workloads, the research identifies
distinct boundaries for performance variability in serverless
networks and storage. In addition, the research finds eco-
nomic break-even points for serverless versus server-based
storage and compute resources. These insights guide the ef-
ficient use of serverless infrastructure for data processing.

There are multiple data processors built entirely on
serverless resources. They employ various adaptive and
cost-based techniques to operate within the limits where
serverless data processing remains practical. These systems
show competitive performance and cost with commer-
cial Query-as-a-Service (QaaS) systems for terabyte-scale
queries of analytical benchmarks. Furthermore, they lever-
age the elasticity of their underlying infrastructure for cost
efficiency in ad-hoc and low-volume workloads, compared
to cloud data systems deployed on virtual servers. Overall,
they demonstrate that serverless resources can be a viable

foundation for large-scale data processing and complement
server-based systems.

The advent of serverless functions draws the market for
cloud compute resources closer to a commodity market,
akin to that of electricity. Although prices remain signifi-
cantly above marginal cost because of insufficient competi-
tion and regulation, they are organized along a continuum
from long-term to short-term delivery. Users have the op-
tion to rent virtual servers through annual contracts at re-
duced rates or at prevailing market prices, while serverless
functions are available for immediate delivery at a higher
cost. Data system providers can select and combine these
resources for their deployments to optimize costs.

To facilitate cost-optimal data processing via elastic re-
source allocation, vendors must re-architect their systems.
They must develop models to predict both the runtime and
cost of jobs while balancing these factors according to user
constraints. In addition, they must decompose their systems
into stateful and stateless components, since serverless com-
pute is inherently stateless and relies on external services
for, e.g., logging, caching, and shuffling.

2 The Challenges of Decomposing Database
Systems in the Cloud (Alexander Böhm)

Modern cloud native software architectures follow a micro-
services approach. They decompose complex applications
into sets of small, individual services. Ideally, these mi-
croservices can iterate quickly, with frequent releases to
production, a small blast radius in case of failures, and
high degrees of freedom regarding e.g. the choice of the
programming language and development style. Moreover,
the individual services can be scaled separately, leading to
a better, more fine-grained resource allocation and reduced
costs.

While the overall benefits of decomposition such as
better scalability, elasticity, and the efficient use of re-
sources are typically advertised publicly in corporate blogs
and academic publications, decomposition also entails no-
table downsides that are not prominently discussed and

K

Datenbank-Spektrum (2025) 25:187–195 189

often overlooked: Disaggregation entails communication
between services. This communication in turn creates ad-
ditional chokepoints, for example by suffering from band-
width limitations, or often even more relevant—elevated
latency. For database systems, an increased latency is
particularly problematic for online transaction processing
systems (OLTP), where applications often expect response
times of less than a millisecond.

Many cloud-native database systems rely on sophisti-
cated caching solutions to mitigate latency. However, this
approach creates high complexity with respect to cache in-
validation, distributed state handling, and increases costs as
data needs to be kept redundantly.

Our conclusion is that the decomposition of stateful ar-
chitectures in general and database management systems
in particular requires great care to avoid overcomplicated
and expensive solutions. We believe that this topic deserves
more attention by both industry and academia.

3 A Database Says More than a Thousand
Files: LLM Training Data Management
(Maximilian Böther, Ana Klimovic)

Training large language models (LLMs) presents new chal-
lenges for managing training data due to ever-growing
model and dataset sizes. State-of-the-art LLMs train over
trillions of tokens that are aggregated from a cornucopia of
different datasets, forming collections such as RedPajama,
Dolma, or FineWeb. As data collections grow and cover
more and more data with different characteristics that come
from different sources, managing the data becomes time-
consuming, tedious, and prone to errors. Yet, we currently
do not see data management techniques being employed
for managing LLM training data. As a consequence, we
see the following three challenges.

Challenge 1: Inefficient Data Management On Filesystems
Most LLM training data is stored and managed as files with-
out a proper data management system, leading to storage
overhead, consistency issues and performance bottlenecks.

Challenge 2: High Engineering Effort for Data Preparation
The amount of data and complexity of the data mixing
process can be overwhelming for model developers. They
spend a lot of time writing data processing code, which
is time-consuming, error-prone, and for each training run
with a new mixture, requires a new copy of the dataset
and a new mixing script. Utilizing a vanilla DBMS would
burden ML engineers with complexities such as database
administration, schema design, and performance tuning,
and there still needs to be an interface between storage,
query engine, and training framework.

Challenge 3:Mixtures Are Becoming Dynamic Dynamically
adjusting the mixture based on training dynamics is an
emerging technique, and offline preparation of the mixture,
mixing based on fixed directory weights, or using a vanilla
DBMS without additional infrastructure does not support
this.

With more and more data being collected, we need a sys-
tem to support the training data management process. We
are currently building Mixtera [1], a lightweight data lake
for distributed LLM training addressing these challenges.
Mixtera can be deployed on top of existing training data
collections. It is a centralized, read-only layer and can be
declaratively queried from training clients. We presented
initial ideas on Mixtera’s design at the ACloudDM work-
shop at BTW’25 as well as at HotInfra at SOSP’24.

4 One System, No ETL, and Unlimited Data:
HTAP in the Cloud (Dominik Durner)

Cloud-based systems are transforming data management by
offering flexible, scalable, and cost-effective infrastructure.

With high durability and virtually unlimited capacity,
cloud object storage has become a cornerstone of modern
analytics.

Our work shows that cloud network bandwidth closes
the NVMe throughput gap [2], making direct analytical
processing on cloud object storage not only feasible but
also increasingly efficient. We developed AnyBlob, a multi-
cloud download manager that delivers throughput compara-
ble to SSD-RAIDs with low CPU overhead; and integrated
AnyBlob into our database system for high-performance an-
alytics [3, 4]. Building on this, Colibri offers a hybrid stor-
age engine designed for HTAP workloads [5]. It organizes
hot transactional data in row-based form and cold analytical
data in a columnar layout, enabling optimized access pat-
terns for both OLTP and OLAP workloads. This combined
architecture reduces data duplication and analytical time-
to-insight by integrating analytics and transactions within
a single engine.

The increasing skepticism toward large-scale distributed
architectures, reflected in claims that “big data is dead”
[6], is supported by workload demands and the cost-benefit
trade-offs of distributed systems. Studies show that most
applications do not require large-scale distributed memory,
as very few applications scan and process 100’s of terabytes
of data [7]. Continued improvements in network bandwidth,
from 100 Gbit/s in 2018 [8] to 200 Gbit/s in 2024 [9], fur-
ther alleviate the demand for distributed systems solely for
data transfer. Instead, database users benefit from simpler
to deploy, single-instance architectures that are backed by
scalable storage and fast networking.

K

190 Datenbank-Spektrum (2025) 25:187–195

Rising customer demand for data ownership over sensi-
tive data and regulatory requirements has led to a growing
popularity of self-managed data infrastructure in private,
public, or even hybrid clouds.

In such environments, a simple data infrastructure, pro-
vided by single-instance HTAP systems, is crucial to enable
organizations to benefit from low-latency insights without
complex data pipelines.

In summary, there is a clear trend towards more stream-
lined cloud data architectures that seamlessly integrate ana-
lytics and transactions while addressing data scalability and
data ownership needs.

5 Databricks Lakeguard: Supporting Fine-
grained Access Control and Multi-user
Capabilities for Apache SparkWorkloads
(Martin Grund?, Stefania Leone, Sven
Wagner-Boysen, Sebastian Hillig, Tim
Januschowski)

Lakehouse architecture has become the de facto standard
for managing data from many different sources in open
formats using fast and cheap cloud storage. Enterprises now
want to apply fine-grained access control policies to manage
increasingly complex data governance requirements. These
rich policies should be uniformly applied across all their
workloads.

In addition, the definition of governance in this context
has evolved. Whereas previously, Lakehouse governance
was focused on coarse-grained data governance, this has
changed with the introduction of Databricks Unity Catalog
[10]. Databricks Unity Catalog is the central catalog for all
kinds of assets across data and AI and is, therefore, the
foundation of our Data Intelligence Platform.

Customers expect to govern access to all assets in a dy-
namic, fine-grained way and enforce it at runtime. Tradi-
tionally, workloads running on Apache Spark cannot en-
force fine-grained governance policies such as views, row
filters or column masks due to the lack of proper security
boundaries between user code and the query engine.

At Databricks, we addressed this challenge with Data-
bricks Lakeguard [11], our implementation of a unified
governance system that enforces any fine-grained data
access policies, including row-level filters and column
masks across all of an enterprise’s data and AI workloads.
Lakeguard builds upon two main components: First, it uses
Spark Connect, a JDBC-like execution protocol, to separate
the client application from the server and ensure version
compatibility. Second, it leverages container isolation in
Databricks’ cluster manager to securely isolate user code
from the core Spark engine. With Lakeguard, a user’s per-
missions are enforced at all times: for any workload and

in any of the supported language (SQL, Python, Scala, and
R) on multi-user compute.

The Lakeguard architecture provides the foundation for
innovating how we provision, manage, and upgrade com-
pute infrastructure for our customers. Today, we already
leverage the same compute platform for both our classic
and serverless offerings to reduce costs and simplify the
product experience. We also see a lot of potential to evolve
this architecture in the future. For example, the separa-
tion of user code from the query engine lets us rethink
approaches to execution locality. By offloading GPU work-
loads, we can run multi-user workloads securely, leveraging
one or more GPUs. This provides more flexibility for us to
manage resource requirements, such as memory and CPU,
more efficiently for our customers. The same flexibility is
very useful when building agentic systems that interact with
a lot of data. Such tools leverage very often generated or
only partially trusted code, and our sandbox management
provides the most suitable environment.

To conclude, customers can continue to rely on Apache
Spark’s extensibility and programmability for their work-
loads ranging from ETL to low-latency SQL and AI
needs. The combination of Databricks Unity Catalog and
Lakeguard allows for the continued evolution of the lake-
house architecture, satisfying the enterprise governance
requirements of fine-grained access control and central
governance.

6 Workload-Driven Indexing in the Cloud
(Andreas Kipf)

In this talk, we challenged the long-standing assumption
that indexing is too costly to be practical in large-scale
data warehouses. By analyzing real-world workloads from
Amazon Redshift, we found that these workloads are highly
repetitive—both in terms of queries and scans. While sys-
tems like Redshift use optimizations such as result caching
and materialized views to improve query performance on
repetitive workloads, their effectiveness is often under-
mined by data modifications—including inserts, deletes,
and updates—that occur between query repetitions.

We introduced predicate caching [12], a lightweight,
workload-aware technique that caches scan predicates and
their qualifying row ranges, rather than entire queries.
Specifically, a cache entry consists of a full scan expression
(key) and a compressed representation of its qualifying row
ranges (value). A predicate cache is built on the fly during
query execution and supports efficient incremental updates.
Despite its simplicity and ease of integration into existing
systems, predicate caching can significantly boost query
performance by reducing both the number of rows scanned

K

Datenbank-Spektrum (2025) 25:187–195 191

and overall I/O. In addition, it improves join performance
by caching the effects of semi-join (Bloom) filters.

Looking ahead, we believe that workload-aware opti-
mization techniques—such as predicate caching—will be
central to the future of cloud data warehousing, offering
substantial performance gains and cost savings. As Large
Language Models (LLMs) become increasingly integrated
into data analytics, the need for efficient and cost-effec-
tive query execution is more critical than ever. Businesses
are eager to harness the power of state-of-the-art models
while keeping costs under control. Cloud data warehouse
systems are beginning to integrate LLM capabilities—e.g.,
by supporting semantic predicates as user-defined functions
(UDFs)—opening new opportunities for workload-aware
optimizations as query patterns evolve.

7 The Fine Art of Work Skipping
(Ismail Oukid, Berni Schiefer)

7.1 Work Skipping: Data Pruning

Pruning is a work-skipping technique that significantly im-
proves query performance by skipping data blocks that are
not relevant to the query. This is achieved by leveraging
metadata to determine which blocks can be safely ignored.
In distributed cloud architectures, where data transfer be-
tween storage and compute layers can incur significant costs
and latency, the ability to skip irrelevant data blocks is par-
ticularly valuable.

Research by Van Renen and Leis [13] highlights the sig-
nificance of this issue, showing that scanning and filtering
operations account for approximately 50% of the total query
processing time in analytical workloads. Our own measure-
ments corroborate this conclusion, though with a slightly
lower figure: for SELECT queries specifically, scanning
and filtering operations consume 37% of query processing
time1.

Further analysis of our analytical workloads reveals that
more than half of analytical queries have a selectivity of 5%
or less. This means that the majority of queries ultimately
need only a small fraction of the data they scan, indicating
significant pruning opportunities.

To realize this pruning potential, Snowflake implements
several types of compile-time and runtime pruning tech-
niques such as filter pruning, join pruning, limit pruning,
and Top-K pruning (see Zimmerer et al. [14] for a detailed
study of Snowflake’s pruning techniques). These techniques
are not mutually exclusive, but complementary. Their com-
bined power allows Snowflake to achieve a staggering

1 Approximate figure measured for a single day (2025-02-03) across
all Snowflake regions.

99.4% pruning efficiency across all production workloads
[14]. As an example, Top-K pruning led to a 53.5% average
improvement for long-running Top-K queries.

Despite the impressive pruning ratio Snowflake achieves
today, our telemetry shows even more pruning potential:
Approximately 40% of all accessed data blocks today could
be pruned. More innovation both in terms of advanced prun-
ing techniques and more powerful metadata is required to
realize this pruning potential.

Pruning efficacy relies on metadata quality: presence,
correctness, and granularity. Metadata availability is the
first requirement, as not all systems provide detailed per-
column, per-data-block metadata. Correctness, which can
be approximate but with defined bounds for safe pruning,
is essential. Granularity, such as file or sub-file levels, also
impacts pruning effectiveness.

7.2 Work Skipping: Result Caching and Reuse

Result reuse is a work skipping technique that leverages
caching to avoid recomputing the same query result. When
a query is executed, Snowflake caches the results for 24h. If
the same query is executed again within this timeframe and
the underlying data has not changed, the results are retrieved
from the cache, significantly reducing query latency.

The impact of result reuse cannot be overstated: Ap-
proximately 25% of all SELECT queries in Snowflake hit
the result cache, demonstrating both the frequency of re-
peated queries in analytical workloads and the effectiveness
of Snowflake’s caching mechanisms.

Snowflake’s cloud-native architecture enables result
caching and reuse at a scale unattainable in traditional on-
premises systems: Snowflake’s result cache operates across
users and is not constrained by size limitations.

For effective result reuse, Snowflake relies on two key
components:

� Online result reuse candidate discovery: This compo-
nent efficiently indexes (using FoundationDB [15]) pre-
viously executed queries that can be reused for a current
query. The system must quickly determine if a semanti-
cally equivalent query has been run before, without in-
troducing significant overhead to the query processing
pipeline.

� Concise query summary: Snowflake creates an accurate
representation of each query to determine if it is semanti-
cally equivalent to a previously executed one. This sum-
mary encompasses a query hash for ease of indexing and
additional, relevant semantic properties.

Not all query results are suitable for reuse. Queries con-
taining entropy-generating functions such as RANDOM()
and ENCRYPT() cannot be reused as they are designed
to produce different results each time they’re executed.

K

192 Datenbank-Spektrum (2025) 25:187–195

However, Snowflake intelligently handles a class of func-
tions that, despite being technically non-deterministic,
should be allowed for reuse in practice. Examples include
ANY_VALUE() and MIN_BY().

Data versioning is another crucial aspect of result reuse.
If the underlying data or any object definition changes,
previously cached results cannot be reused. However,
Snowflake distinguishes between substantive changes that
affect query results and those that do not. For instance,
reorganizing data for better pruning through Automatic
Clustering is semantically irrelevant and does not invali-
date cached results.

While a 25% result reuse ratio is significant, our teleme-
try still indicates improvement potential, emphasizing the
importance of the quality of the query summary (which can
be seen as query metadata) to achieve the full potential of
result reuse.

7.3 Conclusion

We have demonstrated that work skipping is paramount
for high performance in cloud-based systems and that high
quality metadata is its backbone. We also showed that there
are further substantial innovation opportunities in both data
pruning and result reuse.

Snowflake unifies its core components under format-
agnostic APIs, ensuring that most features and perfor-
mance enhancements, including work-skipping techniques,
are compatible with [31]. In fact, we argue that Apache
Iceberg is leveling the field, allowing academic researchers
and industry practitioners to tackle performance challenges
under the same architectural assumptions.

8 Auto-Tuning and Intelligent Scaling in
Amazon Redshift (Panos Parchas, Hinnerk
Gildhoff)

Amazon Redshift [16] is AWS’s cloud data warehouse used
by tens of thousands of customers to process exabytes of
data daily using existing business intelligence tools.

Each Redshift cluster uses an MPP execution engine
spread across multiple EC2 nodes. Data is persisted on S3
and is cached on the local disk of EC2 nodes for faster
access. Traditionally, data warehouses comprise of several
knobs that need to be fine-tuned in order for the system
to perform optimally. These knobs control everything from
coarse grained architectural decisions to low level details
like table physical tuning. For instance, the size and hard-
ware type of the cluster (i.e., the number and type of EC2
instances) depends on the expected workload, which may
vary substantially over time. On the other end of the spec-
trum, the physical tuning of the data (e.g., distribution and

sort keys) may heavily affect the workload performance
through join collocation and block level filtering. As the
workload evolves and varies, all these decisions may need
to be revisited [7].

Throughout its evolution, Redshift has provided mecha-
nisms that alleviate the pain of all this constant monitoring
and fine-tuning of the system in various levels. At the first
level, Redshift implemented an Advisor engine to serve as
a smart DB administrator and take care of physical tuning
decisions of the database tables [17]. At a second level, Red-
shift introduced learned components that heavily integrate
with the system and go beyond what even a sophisticated
administrator can do for workload management [18], Mate-
rialized Views [19, 20] and sorting [12, 21]. The culmina-
tion of Redshift autonomics is Redshift Serverless, which
allows customers to run and scale analytics without the need
to set up and manage data warehouse infrastructure. This
third level allows for both horizontal and vertical scaling of
the cluster without any customer interference [22].

In what follows we dive deeper into these layers of au-
tomation. We provide high-level insight of the problems
we faced and the solutions we implemented. We conclude
this opinion article with a forward looking statement on the
future of autonomics in cloud databases.

8.1 Autonomous DB Administrator

The Redshift Advisor acts as an external database adminis-
trator which is automatically analyzing customer workloads
to optimize table physical properties such as distribution
keys, sort keys and column encoding.

[17] describes the distribution key recommendation in
detail; the workload history is represented via a join multi-
graph and a graph theoretic algorithm based on combinato-
rial optimization identifies the most beneficial join columns
for distribution keys.

Sort keys can improve query performance due to block
level filtering (i.e., pruning of entire blocks of data based
on min/max metadata aka zone-maps [21]). Sort key rec-
ommendation is based on monitoring of the pruning power
of the various predicates that are used in the workload. Op-
timal compression algorithms can be derived by used data
types and simple heuristics. These fine-tuning recommen-
dations are either surfaced to the customer’s console, or
automatically applied (on idle cluster times) via Automatic
Table Optimization [23].

Even before the workload arrives, Redshift Advisor
employs ML techniques to choose appropriate distribu-
tion and sort keys, based on the DB schema, constraints
(e.g., primary/foreign key relations) and data statistics (e.g.,
skew, cardinalities etc) [24]. Once the cluster starts serving
queries, those choices may be refined using the workload
based techniques discussed above.

K

Datenbank-Spektrum (2025) 25:187–195 193

8.2 Learned Components: Beyond a DB Admin

An Autonomous DB administrator is not enough to serve
the customer needs in a modern cloud-based DBMS. Red-
shift has moved beyond, providing learned components that
are deeply integrated with the system to optimize different
stages of query execution.

Automatic workload management (Auto-WLM) is an
internal component that uses machine learning to assign
cluster resources (e.g., memory) on concurrently executing
queries [18] based on their predicted needs. In addition, this
component uses globally and locally trained predictors to
prioritize short-running queries over long running ones.

Materialized views (MVs) are ubiquitous in databases as
a powerful tool that enhances query performance and data
retrieval efficiency. Redshift automates the efficient mainte-
nance and use of MVs in four ways [19]. First, by introduc-
ing AutoMVs, the system monitors the query workload and
automatically creates useful MVs in the background. Red-
shift constantly evaluates the AutoMVs and decides on their
usefulness in the query workload. If the workload changes
and the MVs are no longer deemed to be useful, Redshift
automatically drops them to clean-up resources. All this is
completely transparent to the database users.

Second, Redshift incrementally maintains complex ma-
terialized views to reflect changes on base tables. Incre-
mental view maintenance can handle MVs that contain fil-
ter, projection, grouping, join and set operators. Since Red-
shift thrives on batch processing, MVs are maintained asyn-
chronously, so that the transactional workload is not slowed
down.

Third, Redshift automates the timing of the maintenance.
In particular, Redshift detects which MVs are out of date
and maintains a priority queue to choose which MVs to
update in the background. The prioritization of refreshes is
based on a cost/benefit analysis of the available MVs and
depends on (1) the utility of a materialized view in the query
workload and (2) the cost of refreshing the materialized
view in terms of processing cycles. The goal is to maximize
the overall performance benefit of materialized views.

Fourth, Redshift users can directly query an MV but
they can also rely on Redshift’s sophisticated autorewrit-
ing feature that rewrites queries over base tables to use
the best eligible materialized views. Autorewriting is cost
based and proceeds only if the rewritten query is estimated
to be faster than the original query. The rewrite is robust
so it can identify applicable MVs for parts of the query
(subqueries, UNION ALL legs etc.) and MVs that con-
tain a superset of the queried data (applying any relevant
filters). In order to support automatic MV creation, incre-
mental view maintenance and autorewriting, we developed
a novel DSL-based query rewriting framework, which en-

ables the Redshift team to keep expanding the SQL scope
of these features.

Lastly, we noticed that in some cases, sorting by any
table column is not enough (e.g., string predicates with
wildcards at the beginning or predicates of the form colA >

colB do not benefit by classic sort keys). In such cases, it is
more beneficial to sort the table columns based on whether
they qualify or not for a given set of common predicates
[21] or cache the rowids that qualify using predicate caching
[12].

8.3 Instance Optimized System

Other than individual component decisions that were pre-
sented in the previous sections, there are system wide
choices that determine the system performance. One of
these is the hardware that is being used for the cluster and
how it should scale up and down based on the workload de-
mands. In Redshift we completely removed these decisions
from the customers; with Redshift Serverless, the cluster is
up only for the time window that it is used to serve queries
or execute fundamental auto-maintenance operations. This
has a tremendous effect in Redshift’s price performance,
since customers do not need to pay for idle clusters [16].

Furthermore, instead of choosing the individual hard-
ware, Redshift employs ML techniques to find the most
appropriate cluster size and resize the cluster vertically (as-
suming a constant flow of expensive queries) or horizontally
(through concurrency scaling [16]) in cases of workload
spikes. To achieve this, the system continuously monitors
the workload and runs multiple what-if analyses on locally
and globally trained models to estimate the cost-benefit of
scaling up or down [22].

8.4 Outlook

In this article, we briefly presented the evolution of auto-
nomics in Amazon Redshift. We started with automating
simple database administrator tasks up to complex internal
optimizations at query runtime. Machine learning models
are used at various database components to replace classic
decision making. Hierarchical structures are helping us to
balance fast and optimal decisions from local and global
trained models. In the future, we expect to leverage more
globally trained machine learning models for different ser-
vices at AWS executed by a network of background pro-
cesses with the goal to increase performance and lower
costs for our customers. Customers can concentrate on their
business application and use simple endpoints without the
need to understand a complex cloud architecture with mul-
tiple dedicated services under the hood.

K

194 Datenbank-Spektrum (2025) 25:187–195

9 OBSERVE—Petascale Streaming and
the Future of Observability (Philipp
Unterbrunner, Tomas Karnagel)

In recent years, the landscape of monitoring and observ-
ability has undergone a substantial evolution. Data volumes
have exploded, use cases have diversified, and the demand
for real-time insights has increased significantly. Observe
is a Software-as-a-Service (SaaS) product for monitoring
and observability designed to meet these new challenges,
built in large part on Snowflake [25, 26], at its core a cloud-
based relational data warehouse.

When we founded Observe in 2017, the monitoring and
observability market was a hodge-podge of log search, met-
rics (time series), and distributed tracing products—each
with their own custom data models, query engines, and
query languages.

Based on the past 50 years of data management, which
can be described as a series of waves of post-relational data
models and workloads (object-relational, MOLAP, XML,
graph databases, key-value stores and others) spinning out
and eventually being re-absorbed into the relational ecosys-
tem, we made the contrarian bet that the future of observ-
ability would also be relational.

Observe today is hosting 25 PiB of data (compressed)
and 200 million queries per day for our customers, vali-
dating our bet. And we finally see other systems, such as
a HyperDX on ClickHouse [27], adopting a similar archi-
tecture as Observe. We believe this trend towards observ-
ability products built with cloud-hosted relational technol-
ogy is going to accelerate, based on several technological
undercurrents.

First, the unbundling and rebundling of data services will
continue. While specialized data stores for specific work-
loads will persist, the need for a central, reliable, and scal-
able relational core for analytical and operational insights
will only intensify. Platforms such as Snowflake, Firebolt
[28], ClickHouse [29], or MotherDuck [30], demonstrat-
ing the power of a fully managed, cloud-native relational
data warehouse, are paving the way for a future where the
complexities of infrastructure management are entirely ab-
stracted away, allowing users to focus solely on extracting
value from their data.

Second, the convergence of data warehousing and data
lake capabilities will blur traditional boundaries. The ability
to seamlessly ingest, process, and analyze both structured
and semi-structured data within a uniformly governed en-
vironment, while retaining the ACID properties and tools
ecosystem of relational systems, is becoming paramount.
The impact and rapid spread of the Iceberg table format
serves as evidence of that trend [31]. We anticipate further
innovations in schema-on-read capabilities, efficient han-
dling of semi-structured data, and open standards such as

Iceberg within relational platforms, making them the prin-
cipal infrastructure for all organizational data.

Third, real-time data processing and analytics will be-
come deeply integrated into relational systems. The de-
mand for immediate insights, not just historical analysis,
is growing as all businesses become increasingly digitized
and online. We expect to see advancements in stream pro-
cessing capabilities directly within or tightly coupled with
relational data warehouses, enabling real-time observabil-
ity, alerting, and decision-making based on continuously
flowing data. Our own experience at Observe, processing
massive streams of observability data in near real-time on
Snowflake, underscores the viability of, and demand for,
such systems.

Finally, AI and machine learning are becoming inter-
twined with relational data management. Beyond simply
storing data for AI/ML workloads, we see relational sys-
tems include features such as automated schema optimiza-
tion, intelligent data tiering based on access patterns, or
built-in machine learning capabilities for anomaly detec-
tion and predictive analytics [32]. The rich context and
structured nature of relational data make it an ideal training
ground and operational backbone for AI/ML initiatives.

In conclusion, we believe the future of monitoring and
observability is not about abandoning the relational model.
On the contrary, it lies in the continued evolution and pros-
pering of relational systems in the cloud.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access Dieser Artikel wird unter der Creative Commons Na-
mensnennung 4.0 International Lizenz veröffentlicht, welche die
Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wieder-
gabe in jeglichem Medium und Format erlaubt, sofern Sie den/die
ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen,
einen Link zur Creative Commons Lizenz beifügen und angeben, ob
Änderungen vorgenommen wurden. Die in diesem Artikel enthaltenen
Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten
Creative Commons Lizenz, sofern sich aus der Abbildungslegende
nichts anderes ergibt. Sofern das betreffende Material nicht unter der
genannten Creative Commons Lizenz steht und die betreffende Hand-
lung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben
aufgeführten Weiterverwendungen des Materials die Einwilligung des
jeweiligen Rechteinhabers einzuholen. Weitere Details zur Lizenz ent-
nehmen Sie bitte der Lizenzinformation auf http://creativecommons.
org/licenses/by/4.0/deed.de.

References

1. Böther M, Yao X, Kerimoglu T, Graur D, Gsteiger V, Klimovic
A (2025) Mixtera: A Data Plane for Foundation Model Training.
https://arxiv.org/abs/2502.19790

2. Durner D, Leis V, Neumann T (2023) Exploiting cloud object stor-
age for high-performance analytics. PVLDB 16(11)

3. Cedar D (2024) An ode to PostgreSQL, and why it is still time to
start over. https://cedardb.com/blog/ode_to_postgres

K

http://creativecommons.org/licenses/by/4.0/deed.de
http://creativecommons.org/licenses/by/4.0/deed.de
https://arxiv.org/abs/2502.19790
https://cedardb.com/blog/ode_to_postgres

Datenbank-Spektrum (2025) 25:187–195 195

4. Neumann T, Freitag MJ (2020) Umbra: A disk-based system with
in-memory performance. CIDR

5. Schmidt T, Durner D, Leis V, Neumann T (2024) Two birds with
one stone: Designing a hybrid cloud storage engine for htap.
PVLDB 17(11)

6. Tigani J (2023) Big Data is Dead. https://motherduck.com/blog/
big-data-is-dead

7. Renen A, Horn D, Pfeil P, Vaidya K, Dong W, Narayanaswamy M,
Liu Z, Saxena G, Kipf A, Kraska T (2024) Why TPC is not enough:
An analysis of the Amazon Redshift fleet. PVLDB 17(11)

8. Amazon (2018) New C5n Instances with 100 Gbps Networking.
https://aws.amazon.com/blogs/aws/new-c5n-instances-with-100-
gbps-networking

9. Amazon (2024) Amazon EC2 C7gn metal instance is now. https://
aws.amazon.com/about-aws/whats-new/2024/03/amazon-ec2-c7gn-
metal-instance-available

10. Chandra R, Chen H, Matharu R, Cai S, Chen J, Dutta P, Ghita
B, Greenstein T, Holla G, Huang P, Huo Y, Ionescu A, Ispas A,
Januschowski T, Karajgaonkar V, Leone S, Lewis D, Li A, Li N,
Lian C, Link S, Lu Q, Ma Y, Pettitt C, Prabhakaran V, Raducanu B,
Rong K, Roome P, Shetty S, Smith S, Sun X, Tang Y, Wen W, Xia
L, Zeng J, Zhang B, Xin R, Zaharia M (2025) Unity Catalog: Open
and universal governance for the lakehouse and beyond. SIGMOD

11. Grund M, Leone S, Hövell H, Wagner-Boysen S, Hillig S, Kwon
H, Lewis D, Mund J, Poli P-F, Montrieux L, Crelier O, Li X, Xin
R, Zaharia M, Petropoulos M, Papathanasiou T (2025) Databricks
Lakeguard: Supporting fine-grained access control and multi-user
capabilities for apache spark workloads. SIGMOD

12. Schmidt T, Kipf A, Horn D, Saxena G, Kraska T (2024) Predi-
cate caching: Query-driven secondary indexing for cloud data ware-
houses. SIGMOD

13. Van Renen A, Leis V (2023) Cloud analytics benchmark. PVLDB
16(6)

14. Zimmerer A, DamD, Kossmann J, Waack J, Oukid I, Kipf A (2025)
Pruning in Snowflake: Working smarter, not harder. SIGMOD

15. FoundationDB: FoundationDB. https://www.foundationdb.org
16. Armenatzoglou N, Basu S, Bhanoori N, Cai M, Chainani N, Chinta

K, Govindaraju V, Green T, Gupta M, Hillig S, Hotinger E,
Leshinksy Y, Liang J, McCreedy M, Nagel F, Pandis I, Parchas
P, Pathak R, Polychroniou O, Rahman F, Saxena G, Soundararajan
G, Subramanian S, Terry D (2022) Amazon Redshift re-invented.
SIGMOD

17. Parchas P, Naamad Y, Bouwel PV, Faloutsos C, Petropoulos M
(2020) Fast and effective distribution—key recommendation for
Amazon Redshift. PVLDB 13(11)

18. Saxena G, Rahman MA, Chainani N, Lin C, Caragea G, Chowd-
hury F, Marcus R, Kraska T, Pandis I, Narayanaswamy BM (2023)

Auto-WLM: Machine learning enhanced workload management in
Amazon Redshift. SIGMOD

19. (2022) Optimize your Amazon Redshift query performance with
automated materialized views. https://aws.amazon.com/blogs/big-
data/optimize-your-amazon-redshift-query-performance-with-
automated-materialized-views

20. Svingos C, Hernich A, Gildhoff H, Papakonstantinou Y, Ioannidis
Y (2023) Foreign keys open the door for faster incremental view
maintenance. SIGMOD

21. Ding J, Abrams M, Bandyopadhyay S, Palma LD, Ji Y, Pagano D,
Paliwal G, Parchas P, Pfeil P, Polychroniou O, Saxena G, Shah A,
Voloder A, Xiao S, Zhang D, Kraska T (2024) Automated multidi-
mensional data layouts in Amazon Redshift. SIGMOD

22. Nathan V, Singh V, Liu Z, Rahman M, Kipf A, Horn D, Pagano D,
Saxena G, Narayanaswamy BM, Kraska T (2024) Intelligent scal-
ing in Amazon Redshift. SIGMOD

23. (2023) Automate your Amazon Redshift performance tuning with
automatic table optimization. https://aws.amazon.com/blogs/big-
data/automate-your-amazon-redshift-performance-tuning-with-
automatic-table-optimization

24. (2023) Amazon Redshift announces enhancements to Advisor sort
and distribution key recommendations. https://aws.amazon.com/
about-aws/whats-new/2023/12/amazon-redshift-advisor-sort-distri
bution-key-recommendations

25. Dageville B, Cruanes T, Zukowski M, Antonov V, Avanes A, Bock
J, Claybaugh J, Engovatov D, Hentschel M, Huang J et al (2016)
The Snowflake elastic data warehouse. SIGMOD

26. (2023) How Observe Uses Snowflake to Deliver the Observabil-
ity Cloud. https://www.observeinc.com/blog/how-observe-uses-
snowflake-to-deliver-the-observability-cloud-part-1

27. (2024) HyperDX—Why We Chose Clickhouse Over Elasticsearch
for Storing Observability Data. https://www.hyperdx.io/blog/why-
clickhouse-over-elasticsearch-observability

28. Firebolt Cloud Data Warehouse Whitepaper T https://www.firebolt.
io/resources/firebolt-cloud-data-warehouse-whitepaper

29. Clickhouse Cloud. https://clickhouse.com/cloud
30. Open Lakehouse Stack T (2025) DuckDB and the Rise of Table

Formats. https://motherduck.com/blog/open-lakehouse-stack-duck
db-table-formats

31. Apache Iceberg: Apache Iceberg. https://iceberg.apache.org
32. Zhou X, Chai C, Li G, Sun J (2023) Database meets artificial intel-

ligence: A survey (extended abstract). ICDE

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

K

https://motherduck.com/blog/big-data-is-dead
https://motherduck.com/blog/big-data-is-dead
https://aws.amazon.com/blogs/aws/new-c5n-instances-with-100-gbps-networking
https://aws.amazon.com/blogs/aws/new-c5n-instances-with-100-gbps-networking
https://aws.amazon.com/about-aws/whats-new/2024/03/amazon-ec2-c7gn-metal-instance-available
https://aws.amazon.com/about-aws/whats-new/2024/03/amazon-ec2-c7gn-metal-instance-available
https://aws.amazon.com/about-aws/whats-new/2024/03/amazon-ec2-c7gn-metal-instance-available
https://www.foundationdb.org
https://aws.amazon.com/blogs/big-data/optimize-your-amazon-redshift-query-performance-with-automated-materialized-views
https://aws.amazon.com/blogs/big-data/optimize-your-amazon-redshift-query-performance-with-automated-materialized-views
https://aws.amazon.com/blogs/big-data/optimize-your-amazon-redshift-query-performance-with-automated-materialized-views
https://aws.amazon.com/blogs/big-data/automate-your-amazon-redshift-performance-tuning-with-automatic-table-optimization
https://aws.amazon.com/blogs/big-data/automate-your-amazon-redshift-performance-tuning-with-automatic-table-optimization
https://aws.amazon.com/blogs/big-data/automate-your-amazon-redshift-performance-tuning-with-automatic-table-optimization
https://aws.amazon.com/about-aws/whats-new/2023/12/amazon-redshift-advisor-sort-distribution-key-recommendations
https://aws.amazon.com/about-aws/whats-new/2023/12/amazon-redshift-advisor-sort-distribution-key-recommendations
https://aws.amazon.com/about-aws/whats-new/2023/12/amazon-redshift-advisor-sort-distribution-key-recommendations
https://www.observeinc.com/blog/how-observe-uses-snowflake-to-deliver-the-observability-cloud-part-1
https://www.observeinc.com/blog/how-observe-uses-snowflake-to-deliver-the-observability-cloud-part-1
https://www.hyperdx.io/blog/why-clickhouse-over-elasticsearch-observability
https://www.hyperdx.io/blog/why-clickhouse-over-elasticsearch-observability
https://www.firebolt.io/resources/firebolt-cloud-data-warehouse-whitepaper
https://www.firebolt.io/resources/firebolt-cloud-data-warehouse-whitepaper
https://clickhouse.com/cloud
https://motherduck.com/blog/open-lakehouse-stack-duckdb-table-formats
https://motherduck.com/blog/open-lakehouse-stack-duckdb-table-formats
https://iceberg.apache.org

	Opinion Pieces of the BTW 2025 Workshop On Advances in Cloud Data Management
	Abstract
	Elasticity in Cloud Data Processing: a Matter of Infrastructure Economics and Architectural Implications (Thomas Bodner)
	The Challenges of Decomposing Database Systems in the Cloud (Alexander Böhm)
	A Database Says More than a Thousand Files: LLM Training Data Management (Maximilian Böther, Ana Klimovic)
	One System, No ETL, and Unlimited Data: HTAP in the Cloud (Dominik Durner)
	Databricks Lakeguard: Supporting Fine-grained Access Control and Multi-user Capabilities for Apache Spark Workloads (Martin Grund$*$, Stefania Leone, Sven Wagner-Boysen, Sebastian Hillig, Tim Januschowski)
	Workload-Driven Indexing in the Cloud (Andreas Kipf)
	The Fine Art of Work Skipping (Ismail Oukid, Berni Schiefer)
	Work Skipping: Data Pruning
	Work Skipping: Result Caching and Reuse
	Conclusion

	Auto-Tuning and Intelligent Scaling in Amazon Redshift (Panos Parchas, Hinnerk Gildhoff)
	Autonomous DB Administrator
	Learned Components: Beyond a DB Admin
	Instance Optimized System
	Outlook

	OBSERVE—Petascale Streaming and the Future of Observability (Philipp Unterbrunner, Tomas Karnagel)
	References

