
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 1

Evolutionary Minimization of Traffic Congestion
Maximilian Böther, Leon Schiller, Philipp Fischbeck, Louise Molitor, Martin S. Krejca, Tobias Friedrich

Abstract—Traffic congestion is a major issue that can be solved
by suggesting drivers alternative routes they are willing to take.
This concept has been formalized as a strategic routing problem
in which a single alternative route is suggested to an existing
one. We extend this formalization and introduce the MULTIPLE-
ROUTES problem, which is given a start and destination and aims
at finding up to n different routes that the drivers strategically
disperse over, minimizing the overall travel time of the system.

Due to the NP-hard nature of the problem, we introduce the
MULTIPLE-ROUTES evolutionary algorithm (MREA) as a heuris-
tic solver. We study several mutation and crossover operators
and evaluate them on real-world data of Berlin, Germany. We
find that a combination of all operators yields the best result,
reducing the overall travel time by a factor between 1.8 and 3,
in the median, compared to all drivers taking the fastest route.
For the base case n = 2, we compare our MREA to the highly
tailored optimal solver by Bläsius et al.[2], and show that, in the
median, our approach finds solutions of quality at least 99.69%
of an optimal solution while only requiring 40% of the time.

Index Terms—Strategic routing, traffic congestion, optimiza-
tion, evolutionary algorithm.

I. INTRODUCTION

Traffic congestion is an increasing problem for urban areas
across the world [3]. A solution is to route drivers by proposing
them routes that reduce the overall travel time of the system,
e.g., by navigation systems. Generally, proposing the same
route to all drivers is not reasonable, as this rather causes
traffic congestion if the number of drivers is too high. Instead,
drivers need to disperse over different routes, with some of
them taking sub-optimal options into consideration [4] – a
cost that some drivers are willing to take [5]. We refer to this
setting as strategic routing. A well-studied domain that meets
some of these requirements is route planning [6]. Most results
consider a time component of each route, e.g., by considering
flow over time [7] or predicted congestion [8], [9], [10], [11],
or they consider multiple routes, where the alternative route
needs to be substantially different [12], [13]. However, none
of these results take the overall travel time of the system or
psychological factors of the drivers into account.

A problem that does consider road capacities and psycho-
logical models for route choices by drivers is the recently
introduced SINGLE-ALTERNATIVE-PATH (SAP) problem [2],

M. Böther is with ETH Zurich
L. Schiller, P. Fischbeck, L. Molitor and T. Friedrich are with Hasso Plattner

Institute, University of Potsdam
M. S. Krejca is with LIX, CNRS, Ecole Polytechnique, Institut Polytech-

nique de Paris
M. S. Krejca has received funding from the European Union’s Horizon

2020 research and innovation program under the Marie Skłodowska-Curie
grant agreement No. 945298-ParisRegionFP.

This paper extends our results published at GECCO’21 [1]
This work has been submitted to the IEEE for possible publication.

Copyright may be transferred without notice, after which this version may
no longer be accessible.

a strategic-routing problem that aims to find an optimal
alternative route to a given route for a group of drivers. Still,
the SAP problem is restricted to a single alternative route
and requires one route to be given as an input. In this paper,
we naturally extend the SAP problem to the more general
MULTIPLE-ROUTES (MR) problem, which aims to minimize
the overall travel time of all drivers in a system by proposing
a set of routes to them, with the number of routes being
controlled by a parameter. In order to account for bounded
rationality and differing preferences by the drivers [14], we
assume they form a user equilibrium on the given routes,
i.e., a state in which no single driver can improve their
travel time by choosing a different route. Since the MR
problem is NP-hard, we introduce the MULTIPLE-ROUTES
evolutionary algorithm (MREA) to heuristically solve it. The
MREA belongs to the class of evolutionary algorithms –
nature-inspired metaheuristics that have been applied to great
success to hard problems in various domains [15], [16],
including non-strategic routing problems, e.g., the VEHICLE
ROUTING PROBLEM [17], [18]. The MREA has a population
size of µ, uses four different mutation operators (changing a
single solution), and employs crossover (combining different
solutions) to find good solutions to the MR problem.

Using real-world data for the city of Berlin, Germany,
provided by TomTom Germany, we evaluate all operators of
the MREA for different route scenarios and compare them
to the naive solution of all drivers taking the fastest route.
Our results (Table I) show that using more mutation operators
and a larger population size yields better solutions. All three
crossover operators that we suggest perform almost equally
well, such that one can choose the fastest. Depending on the
route scenario, a best configuration of the MREA reduces
the overall travel time of the system by factors between 1.8
and 3, in the median. Even using a single mutation operator (a
population size of 1 and no crossover) improves the solution by
factors between 1.5 and 2.8. We adapt the MREA to the SAP
problem and compare its solution quality to the deterministic,
highly problem-specific exact solver of Bläsius et al. [2]. We
find (Figure 8) that the best configuration of the MREA, in
the median, achieves a solution quality of at least 99.69% in
only 40% of the run time. Overall, our results suggest that the
MREA is a heuristic well-suited for solving the MR problem
and thus reducing traffic congestion in strategic scenarios.

In Section II, we formalize the MR problem, and we
introduce the MREA in Section III. In Section IV, we analyze
the performance of the MREA and the effect of its operators
and population size. In Section V, we apply the MREA to
the SAP problem and compare it against the algorithm of
Bläsius et al. [2]. We conclude our work in Section VI. For
supplementary material, we refer to our repository [19].

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 2

II. THE MULTIPLE-ROUTES PROBLEM

Given a route network graph G = (V,E) and a continuous
flow of k ∈ R≥0 drivers per unit of time between an origin
s ∈ V and a destination t ∈ V , we consider routing this
flow among n ∈ N+ routes, where we assume that drivers
distribute among these n routes such that no driver in this
flow can choose a quicker route as long as no other driver
cooperatively changes their route. We call such a state an n-
restricted user equilibrium (n-UE). The MULTIPLE-ROUTES
(MR) problem aims to find an optimal set of n routes such
that the overall travel time of drivers in an n-UE is minimized.

In the following, we describe how we model the MR prob-
lem (Section II-A), prove that it is NP-hard (Section II-B),
and go into detail about the user equilibrium (Section II-C).

A. Problem Modeling

We follow the formalization by Roughgarden and Tar-
dos [20] but add the constraint of n routes. Let G = (V,E)
be a directed graph, s ∈ V , t ∈ V , k ∈ R≥0, and n ∈ N+.
Further, let Ps,t denote the set of all routes from s to t.
A traffic flow f :Ps,t → R≥0 is a mapping that assigns to
each P ∈ Ps,t a value representing the amount of drivers on
each edge of P per unit of time. Note that this value may
not be integer. We call a traffic flow valid if and only if
|{P ∈ Ps,t | f(P) > 0}|≤ n and if

∑
P∈Ps,t f(P) = k.

Further, if and only if f is an n-UE (Section II-C), we call the
traffic flow stable. The travel time of drivers on an edge e ∈ E
is determined by a latency function τe:R≥0 → R≥0 ∪ {∞}.
That is, for all x ∈ R≥0, τe(x) defines the time a single driver
needs to travel along e assuming there are x agents entering e
per unit of time.1 We assume τe to be monotonically increasing
and continuous. For a traffic flow f , the flow fe over e is then∑

P∈Ps,t:e∈P f(P), and the overall travel time of drivers on
route P ∈ Ps,t is τP (f) =

∑
e∈P τe(fe).

Last, for each traffic flow f , we associate a cost C(f) that
denotes the overall travel time of all drivers. Formally,

C(f) =
∑

P∈Ps,t
f(P) · τP (f) . (1)

The MR problem aims to find a valid and stable traffic flow
with minimum cost among all valid and stable traffic flows.

B. NP-Hardness of MULTIPLE-ROUTES

In the following, we show the NP-hardness of the MUL-
TIPLE-ROUTES problem. To this end, we define a decision
problem variant of MULTIPLE-ROUTES which adds a com-
parison factor C to the instances.

Definition 1. An instance (G, s, t, k, n, C), where G subsumes
a graph and the associated latency functions, is in MULTIPLE-
ROUTES if and only if there is an n-user equilibrium flow that
distributes k drivers over a set of n routes on G from s to t
such that the overall travel time is at most C.

We show that this decision problem is NP-complete via
a reduction from the NP-complete 2 DIRECTED DISJOINT

1The latency function can also be used to model road capacities by setting
it to infinity if too many drivers access a road.

PATHS (2DDP) problem [21]. This problem decides, given a
directed graph G = (V,E) and four nodes s1, s2, t1, t2 ∈ V ,
whether there is an s1-t1 path P1 and an s2-t2 path P2 such
that P1 and P2 are edge-disjoint.

Theorem 1. MULTIPLE-ROUTES is NP-complete.

Proof. MULTIPLE-ROUTES is in NP, as the graph can be
traversed non-deterministically starting at s and constructing n
paths from s to t. The resulting flow and its overall travel time
can be calculated in polynomial time. It remains to show that
MULTIPLE-ROUTES is NP-hard.

Given a 2DDP instance, the reduction adds two nodes s, t
and four edges es-s1 ,es-s2 ,et1-t and et2-t to the graph G.
Furthermore, for the two edges es-s1 and et1-t, the latency
functions for all x are defined as

τes-s1
(x) = τet1 -t(x) =

{
0, if x ≤ 1;

x− 1, else.

For the remaining edges e, we define for all x

τe(x) =

{
0, if x ≤ 2;

x− 2, else.

Assume an instance with n = 2 routes, k = 3 different drivers
who have to be routed from s to t with overall costs of C =
0. We now show that there are two disjoint paths P1, P2 if
and only if we are able to solve MULTIPLE-ROUTES on the
modified graph with the latency functions defined above.

Assume that there are two disjoint paths P1, P2. If we
construct two new paths P ′

1 = (es-s1 , P1, et1-t) and P ′
2 =

(es-s2 , P2, et2-t), the user equilibrium flow on this route set
assigns one driver to path P ′

1 and two drivers to path P ′
2. This

is a n-user equilibrium since all used paths have a latency of 0
under this distribution. Thus, the overall travel time is 0 and
the constructed instance is in MULTIPLE-ROUTES.

For the opposite direction of the reduction, let there be a
valid n-user equilibrium flow with an overall travel time of 0
on the graph G. By construction, there must be a path from s
over s1 and t1 to t used by 1 agent and another path from s
over s2 and t2 to t used by 2 agents, as we would have non-
zero costs otherwise. Moreover, these two paths may not share
an edge, as there would be non-zero costs otherwise. We have
thus found two disjoint paths P1 from s1 to t1 and P2 from
s2 to t2. As the reduction is polynomial-time, this concludes
the proof.

C. The User Equilibrium

In routing games, a user equilibrium (UE), also known as
Wardrop equilibrium [22], is a game state where no player
has anything to gain by changing only their own strategy [23].
This state occurs when all drivers act selfishly and choose their
route such that they aim to minimize their travel time, given
that other drivers also occupy roads [20]. In the MR problem,
we consider n-UEs, where no driver can improve their travel
time by unilaterally changing their route while the traffic flow
stays valid. Given (G, s, t, k), a UE always exists [24], [25],
[20]. However, in contrast to UEs, an n-UE is a traffic flow
with a route set of maximum size n where drivers are not

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 3

allowed to choose a new route if this exceeds the number of
n different routes in total. In particular, an n-UE does not
have to be unique, as it highly depends on n. Nonetheless,
each valid UE is also an n-UE.

We approximate an n-UE by computing a UE under the
constraint of using at most n routes. To this end, we model
the UE as a convex problem [24], which we approximately
solve with the FRANK–WOLFE algorithm [26], adjusted such
that it makes sure to satisfy the constraint of at most n routes.

In the following, we overview the Frank–Wolfe algorithm
as well as its step-size, which is a crucial parameter.

1) FRANK–WOLFE Algorithm for User Equilibria: In the
following we provide a more formal definition of the user
equilibrium and some background on how to calculate it.
To this end, we first introduce the following function that
redistributes flow between paths.

Definition 2. Let G = (V,E) be a graph, f a route flow,
and (s, t) ∈ V 2. For P1, P2, P ∈ Ps-t and δ ∈ [0, f(P1)], we
define the flow redistribution function as

f̃
(P1,P2)
δ (P) :=

f(P1)− δ, if P = P1;

f(P2) + δ, if P = P2;

f(P), otherwise.

Definition 3 (User Equilibrium, [20]). Let G = (V,E) be a
graph with latency functions for the edges, f a route flow, and
(s, t) ∈ V 2. Then, f is in a user equilibrium if and only if for
all P1, P2 ∈ Ps-t, δ ∈ (0, f(P1)], τP1

(f) ≤ τP2

(
f̃

(P1,P2)
δ

)
.

The MREA (Algorithm 2) calculates the user equilibrium
of the MR problem by optimizing a convex program via
the FRANK–WOLFE algorithm [26]. In order to apply this
algorithm, the function to be optimized as well as the set
of possible solutions need to be convex. Following Patriks-
son [27], the FRANK–WOLFE Algorithm works as described
in Algorithm 1. In each step, it solves a linear program that
approximates the convex program and then moves towards the
minimizer of this program. The optimal step size is chosen
according to the objective function via a line-search.

The user equilibrium can be expressed as a convex pro-
gram [24]. For a flow u, let z(u) =

∑
e∈E

∫ u(e)

0
τe(x) dx. For

(s, t) ∈ V 2, the flow u corresponding to the user equilibrium
is the minimum of z, subject to

∑
P∈P u(P) = k and

∀P ∈ Ps,t:u(P) ≥ 0. We show that the solution set of this
convex program is convex. To this end, we introduce a new
concept called flow vectors, allowing interpolation between
flows. For every flow f , we derive a flow vector f . Every s-t
path maps to one index in the flow vector. The vector element
at the according index is equivalent to the amount of traffic
flow f(P) assigned to the corresponding route P ∈ P . Similar
to flow functions, we use f(P) for the amount of traffic flow
assigned to route P by the flow vector f . Similar to route
flows, flow vectors induce edge flow vectors.

Lemma 1. For a graph G = (V,E), let s, t ∈ V and k be
the traffic flow traveling from s to t. Let D be the set of flow
vectors between s and t. Then, D is a convex set.

Proof. Let u and u′ be two flow vectors between s and t.
Furthermore, let γ ∈ [0, 1]. We now prove that the interpolated
vector u′′ = γ · u′ + (1 − γ) · u is a flow vector between s
and t as well. Therefore, we already showed that the demand k
is exactly fulfilled, i.e.,

∑
P∈P u′′(P) = k, and that for all

P ∈ P , u′′(P) ≥ 0. Since u and u′ are flow vectors, for all
P ∈ P , u(P), u′(P) ≥ 0. With 0 ≤ γ ≤ 1 and the definition
of u′′ we get, for all P ∈ P , u′′(P) ≥ 0.

We now show that
∑

P∈P u′′(P) = k holds. Note that∑
P∈P u(P) =

∑
P∈P u′(P) = k since u and u′ are flow

vectors that fulfill the demand k exactly.∑
P∈P

u′′(P) =
∑
P∈P

((1− γ) · u(P) + γ · u′(P))

= (1− γ)
∑
P∈P

u(P) + γ
∑
P∈P

u′(P)

= (1− γ) · k + γ · k = k.

As described in Algorithm 1 the FRANK–WOLFE algorithm
solves a linear program in each iteration. For calculating user
equilibria, we substantiate the abstract term pTq ∇z(xq) by
calculating the gradient of z and simplifying to pTq ∇z(xq) =∑

e∈E τe(xq(e)) · pq(e), subject to
∑

P∈P pq(P) = k and
∀P ∈ P: pq(P) ≥ 0. Furthermore, the constraint pq ∈ D is
equivalent to pq being a flow vector. Hence, this linear program
needs to be solved in every iteration in order to obtain pq based
on the current flow vector xq .

We show that solving this linear program is equivalent to
assigning all drivers to the shortest route in a graph where
each edge e has a fixed cost of τe(xq(e)).

Lemma 2. When calculating a user equilibrium on a graph
G = (V,E) for (s, t) ∈ V 2 using the FRANK–WOLFE
algorithm, in iteration q, the solution pq to the linear program
is the flow vector x that assigns all k drivers to the shortest
s-t path of an adjusted graph G′ where every edge e has a
cost of τe(xq(e)).

Proof. Let P be the shortest path from s to t. Assume the
contrary, i.e., that the optimal assignment x′ assigns flow to
another path P ′ such that x′(P ′) > 0. As all edges have
constant costs and P is the shortest path, τP (xq) < τP ′(xq).
Hence, according to the definition of the system cost C,
assigning all drivers using P ′ to P yields another feasible
assignment with lower overall costs which is a contradiction
to x′ being the optimal assignment.

In the case of the MULTIPLE-ROUTES problem, we are
only allowed to assign drivers to a fixed set of routes, as
discussed in Section II-C. In order to approximate a user
equilibrium, the drivers are assigned to the shortest route in
the set instead of the graph. This may break the convergence
of the FRANK–WOLFE algorithm but allows to approximate
the user equilibrium on the routes quite well.

2) Step Size Determination: There are various approaches
for choosing the factor γ ∈ [0, 1] used for interpolating
between xq and pq . We employ a line-search, i.e., we find
γ ∈ [0, 1] minimizing z̃(γ) = z(xq + γ(pq − xq)), as this is
the best step towards the global minimum of z that can be

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 4

Algorithm 1: The FRANK–WOLFE algorithm [26] for
optimizing a convex program

Input: Convex set D, f :D → R convex, differentiable
function, x0 ∈ D

Output: x ∈ D s.t. f(x) is minimal
1 q ← 0;
2 while not converged do
3 Find pq minimizing the following linear program

minimize pTq ∇f(xq)

subject to pq ∈ D;
4 γ ← Line-Search Determination of step size;
5 xq+1 ← xq + γ(pq − xq);
6 q ← q + 1;

7 return xq;

made from one iteration to the next. To this end, we consider
the derivatives w.r.t. γ,

z̃′(γ) =
∑
e∈E

τe(xq(e) + γ(pq(e)− xq(e))) · (pq(e)− xq(e)),

z̃′′(γ) =
∑
e∈E

τ ′e(xq(e) + γ(pq(e)− xq(e)))·(pq(e)− xq(e))
2.

Since the cost functions τe are monotonically increasing, for
all γ ∈ [0, 1], z′′(γ) ≥ 0. For a concrete edge latency
function τe, we now set the first derivative to zero in order to
calculate the minimum. For the US Traffic Model we introduce
in Section IV, we obtain

z̃′(γ) =
∑
e∈E

(ae · (xq(e) + γ(pq(e)− xq(e))
2 + be)

· (pq(e)− xq(e))

=
∑
e∈E

ae(pq(e)−xq(e))
3 ·γ2+2aexq(e)(pq(e)−xq(e))

2

· γ + (aexq(e)
2 + be)(pq(e)− xq(e))

which is a second-order polynomial whose roots can be
calculated efficiently.

III. THE MULTIPLE-ROUTES EA

The MREA (Algorithm 2) is an elitist EA for optimizing the
MR problem. Given an MR instance (G, s, t, k, n), it maintains
a population of µ route sets (the individuals), each of which
consists of exactly n (not necessarily different) routes from s
to t. Each individual is scored via a value (the fitness), which
is determined by first approximating the n-UE, as described
in Section II-C, and then scoring the resulting traffic flow via
equation (1). Individuals are compared via their fitness, and a
lower fitness is considered better.

The MREA generates offspring in two different (and exclu-
sive) ways: by (1) via a crossover operation (lines 8 to 11) and
(2) by employing a random number of mutation operators to
a copy of each individual (lines 12 to 20). Then, the MREA
reduces the population size to µ via truncation selection,
breaking ties uniformly at random (line 23). Note that to
avoid a single good individual being copied via crossover and

Algorithm 2: The MULTIPLE-ROUTES EA. Note that
we use set notation, even though the sets are multisets.
Input: MR instance (G, s, t, k, n), population size µ,

crossover strategy cStra , termination criterion
Output: Set of n routes from s to t

1 P ← ∅;
2 repeat µ times
3 ind ← new individual;
4 repeat n times
5 add route RANDDIJKSTRA(s, t, k) to ind ;

6 P ← P ∪ {ind};
7 while termination criterion not met do
8 C ← ∅;
9 repeat

√
µ2 − µ/2 times

10 ind1, ind2 ← chosen u.a.r. from P ;
11 C ← C ∪ {cStra(ind1, ind2)};
12 P ′ ← copy of P ;
13 for every individual ind in P ′ do
14 mutations ← max(1, Pois(1.5));
15 ops ← ∅;
16 repeat mutations times
17 ops ← ops ∪ {randomly weighted selected

operator in {NewRoute,RandomP,LinkWP,
ExSegment}};

18 if ops contains ExSegment then
19 ops ← {ExSegment};
20 apply operators in ops to ind ;

21 if no individual in C is strictly better than the best
in P then

22 C ← ∅;
23 P ← the µ best individuals in C ∪ P ′ ∪ P ;

24 return the best individual in P ;

then taking over the entire population, the offspring generated
by crossover is only considered for selection if there is an
individual in the offspring population that is strictly better
than the best individual in the parent generation (lines 21
and 22). The algorithm stops after a user-defined termination
criterion. Although the MREA operates on sets of routes, many
operators also perform changes to single routes. To this end,
the subroutine RANDDIJKSTRA is used, which finds a shortest
path on G with randomly perturbed edge weights.

In the following, we explain the RANDDIJKSTRA subrou-
tine (Section III-A) and then go into detail about the mutation
(Section III-B) and crossover (Section III-C) operators of the
MREA.

A. RANDDIJKSTRA

The RANDDIJKSTRA (RD) is a randomized variant of Dijk-
stra’s shortest-path algorithm [28]. Given two nodes s and t,
it returns a random, yet still short route from s to t. RD works
like Dijkstra’s algorithm, but whenever relaxing an edge e, its
weight w is perturbed such that w ∼ N(τe(x), 0.8 · τe(x)),

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 5

where τe is the latency of e and where x is the traffic flow
routed from s to t and where 0.8 was determined a good value
in preliminary tests. Due to its extensive use, RD contributes
the most to the run time of the MREA. Hence, we consider
in the following possible speed-up techniques.

Acceleration of RANDDIJKSTRA: The acceleration of
shortest path algorithms is subject of intensive research [6].
Well-known speed up techniques for Dijkstra’s algorithm, like
SHARC [29], often require preprocessing of the graph. In
the case of RANDDIJKSTRA, we cannot employ acceleration
techniques that require preprocessing due to the randomness of
the edge weights. Hence, most modern shortest-path variants
cannot be used in the MULTIPLE-ROUTES EA.

We use the approach of Aviram and Shavitt [30], which
does not use preprocessing. It employs a priority queue that
utilizes the invariant of Dijkstra’s algorithm that once a node
of value x has been popped from the queue, no node with
distance less than x is pushed into it again. This invariant also
holds for the RANDDIJKSTRA. The approach represents the
queue as an array allowing for O(1) insertion and decrease-
key operations. The entry at index i is a linked list of all nodes
pushed into the queue with weight i, required to be integer
values. Thus, the randomly determined floating-point weights
of RANDDIJKSTRA are rounded in the insertion operation.
The queue maintains a pointer to the last index from which
an element was removed. Due to the invariant, this pointer
never decreases. Hence, when pointing to a non-empty cell,
the pop operation that gives us the minimal element also is in
O(1). Whenever the pointer points towards an empty cell, it
increases until it finds a non-empty cell or the queue is empty.
Hence, if w is the maximum weight of a node pushed to the
queue, the run time of Dijkstra’s algorithm using this priority
queue is O(|E|+w). Note that this is not a real priority queue
anymore, as it does not support the insertion of nodes with
weight lower than the current pointer.

One important factor that determines the real-world run time
of this approach is the size of the array during initialization. If
the array is too small, it needs to be resized whenever a large
weight gets pushed into the queue. If the array is too big, the
initial memory allocation takes much time. As an estimation,
we set the initial queue size to 30 % of the largest weight
encountered during the initialization of the population, but at
least 65 565. In experiments, this has shown to be a good
estimation for our traffic model and scenarios. For details of
the implementation, we refer to the original paper [30].

B. Mutation Operators

In total, the MREA has four mutation operators: NewRoute,
RandomP, LinkWP, and ExSegment, each with its own weight.
When mutating an individual, the MREA first decides how
many mutations to execute consecutively. This number is
determined by a Poisson distribution with an expected value
of 1.5, but at least one mutation is performed (line 14 in Al-
gorithm 2). Afterwards, for each mutation to apply, a mutation
operator is chosen randomly proportionally to its weight
(line 17). If ExSegment is chosen, then all other operators
are discarded for this mutation (lines 18 and 19). Last, all

chosen operators are applied to the individual (line 20). In the
following, we detail all four mutation operators.

1) NewRoute: Chooses a single route randomly propor-
tionally to its inverse traffic flow and replaces this chosen
route with one computed by RD. The weight of NewRoute is
determined dynamically. In order to have a good exploration–
exploitation tradeoff, it is 30 for the first 10 iterations, and
then lowered linearly such that it reaches 1 in iteration 200.

2) RandomP: Replaces subsegments of a randomly selected
subset of routes via RD. The routes to be modified are chosen
proportionally to their inverse traffic flow. For each such route,
r denoting its length, RandomP chooses a start node uniformly
at random and a destination node by advancing a number of
steps according to the Gaussian distribution N(0.25r, 0.5r).
Then, RD replaces the route segment between these two nodes.
In order to find a different subsegment between these two
nodes, RD increases the costs of the edges of the current
route. Last, all cycles that may occur in the route after the
replacement are deleted, i.e., if a route visits a vertex v twice,
the edges between the two visits form a cycle and are removed.
RandomP has a constant weight of 60.

3) LinkWP: Is identical to RandomP except for the choice
of delimiting nodes of the subsegment to replace. For each
node v on a chosen route, LinkWP calculates a metric that
describes how likely it is for a meaningful subroute to occur
at v. The metric is defined as the sum of the capacities of all
outgoing edges of v except for the edge currently used in the
route. The start node is chosen randomly proportionally to this
metric. The destination node is chosen randomly by selecting
one of the nodes on the original route that comes after the
start node, proportionally to the same metric.

LinkWP has a constant weight of 30. Note that this weight
is lower than the one of RandomP in order to not introduce a
too heavy problem-specific bias into the mutation step.

4) ExSegment: Swaps subsegments between two routes
of the same individual. First, it chooses a pair of different
routes uniformly at random and removes their cycles. Then, it
determines the nodes occurring in both routes, which we call
shared points. Among the shared points, let the divergence
points be the nodes whose successor is different in both
routes, and let the goto points be those whose predecessor
differs. ExSegment chooses one divergence point vs uniformly
at random and a node vt uniformly at random from the set of
all goto points that appear after vs. If such nodes exist, the
route segments between vs and vt from both chosen routes
are then swapped. If not, nothing happens. See Figure 9 in
the supplementary material for more details.

The weight of ExSegment is determined dynamically. If
ExSegment was applied within the last 6 iterations, its weight
is 0, as this operator is expensive and a too rapid succession
of uses is unlikely to change much. If ExSegment was applied
more than 6 iterations ago, its weight is determined as follows.
It starts at 15 and is increased linearly to 30, depending on
the iterations without improvement. The point in time when it
reaches exactly 30 depends on the used convergence criterion
(see Section IV for more details).

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 6

C. Crossover Operators

We consider three different binary crossover operators. We
recall that, in contrast to the mutation operators, the MREA
only uses a single crossover operator. This is due to there
being a large tradeoff between run time cost and improvement
in solution quality when considering different operators and
due to the operators all being versions of the same idea.

Regardless of the operator chosen, the MREA creates√
µ2 − µ/2 offspring in each iteration. Note that this number

is the square root of all possible
(
µ
2

)
2-combinations of µ

individuals. By the birthday paradox, the possibility of a
combination of two individuals being chosen at least twice
becomes over 50% once in the order of this value. Thus,
when creating

√
µ2 − µ/2 offspring, we aim to create as many

individuals as possible without getting many doubles.
All of our proposed operators consider a diversity score D

that reflects how similar the routes of an individual are. The
assumption is that a more disjoint route set usually leads to
a lower overall travel time, due to less congestion on single
roads. For an individual S and an edge e ∈ E, let cSe denote
the count how often the edge appears in S. The score D of S
is defined such that larger values are worse:

D(S) =

∑
e∈{e∈E | cSe >1}(c

S
e)

2

max
(
1,
∑

e∈{e∈E | cSe =1} c
S
e

) .
In the following, we explain how each crossover operator

constructs a new solution. In addition, fig:crossover-example
in the supplementary material provides further details.

1) Exhaustive Crossover: Considers all
(
2n
n

)
route sets

possible from the routes of the two parents, and returns the
combination with the lowest diversity score.

2) Greedy Crossover: Greedily constructs a new route set,
guided by D. It randomly chooses one of the 2n routes of
the parents, proportionally to their inverse traffic flow. The
remaining n−1 routes of the new solution are chosen greedily
among the remaining routes of both parents, always choosing
the first (new) route such that the current diversity score is
minimized.

3) Randomized Greedy Crossover: Takes the same ap-
proach as Greedy Crossover, but instead of greedily choosing
the route maximizing the diversity score of the route set,
it randomly selects one of the 2n routes, with replacement,
proportionally to the inverse of its diversity score. That is, the
more diverse the route set with that route is, the more likely
the route is to be chosen.

IV. PARAMETER EVALUATION

We empirically analyze the utility of the operators of the
MREA on the street network of Berlin, Germany. For each
operator, we investigate how much the solution quality of the
MREA changes when it is added to the algorithm. In Sec-
tion IV-C, we begin by evaluating the mutation operators,
excluding crossover. In Section IV-D, we analyze the impact
of the population size µ. In Section IV-E, we add crossover
to the MREA, and we compare the quality achieved by the
three different crossover operators with each other. Last, in

Section IV-F, we compare the elitist selection strategy of
the MREA to tournament selection. Our evaluations show
that using more mutation operators, a larger population size,
and crossover are all beneficial for improving the best fitness
of the MREA. The largest improvement is made by adding
the operators RandomP and NewRoute. Further, adding more
operators generally decreases the spread of the results, in
addition to improving them. Table I summarizes the median
best fitness of all our parameter settings.

A. Implementation Details

We implemented the MREA in C++ 17 and embedded
it into the routing framework of Bläsius et al. [2], which
allows for compatibility with the standard MATSim traffic
simulator [32]. The source code is in our repository [19]. With
exception of a priority queue, we use data structures from
the C++ STL, rely on OpenMP for parallelization [33], and
on the GNU Scientific Library [34].

B. Experimental Setup

We consider MR instances with the graph G being the street
network of Berlin2, Germany, provided by TomTom Germany,
and with k = 3000, which is a reasonable choice [2]. We
choose n = 2 in order to model proposing a driver with a
small choice of fast routes. Choosing larger values makes this
choice more troublesome for the driver, and it makes it also
more unlikely to find that many different and fast routes. We
choose the following 11 highly diverse scenarios:

0) Babelsberg – Lichterfelde
not inner-city; country road, non-obvious deviation

1) Griebnitzsee – Ahrensfelde
very long; fastest route uses express highway (EH),
second fastest route goes through the inner-city

2) KaDeWe – East Side Gallery
short, inner-city; many possible detours

3) Lichterfelde – Prenzlauer Berg
long, south to north; EH and inner-city side streets

4) Lichterfelde – Steglitz
very short, inner-city; direct route uses side streets, but
highway and EH are nearby

5) Moabit – Birkenwerder
long, start in the city center; choice for highway or EH

6) Olympiastadion – Rotes Rathaus
long, inner-city; possible almost entirely on a highway

7) Potsdamer Platz – Pergamonmuseum
short, inner-city; different highways or side streets that
are reasonable, in a Manhattan-like layout

8) Potsdamer Platz – Tempelhofer Feld
medium-long, inner-city; bottleneck at a bridge, but
opportunity to split up onto two highways

9) Teltow – Hoppegarten
long, south-west to east; either long detour using EH or
a more direct inner-city highway

10) Wannsee – Schönefeld
the k-Dijkstra shortest route detours to use EH

2This graph has 158 864 vertices and 342 778 edges.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 7

0 1 2 3 4 5 6 7 8 9 10scenario

1.0

1.5

2.0

2.5

3.0
no

rm
al

iz
ed

fit
ne

ss
rponly
wponly
nronly

Fig. 1: Boxplots (Section IV-B) of the normalized best fitness of the MREA with µ = 1 after 150 iterations for all 11 scenarios,
with 75 runs per scenario. Each of the three colors, from left to right, represents the MREA using exactly one mutation operator
from Section III-B. Per scenario, the fitness is normalized to the median of rponly. In general, rponly performs best. Please
refer to Section IV-C1 for more details.

0 1 2 3 4 5 6 7 8 9 10scenario
0.8

1.0

1.2

1.4

1.6

no
rm

al
iz

ed
fit

ne
ss

rponly
wnewroute
wlinkp
wexseg

Fig. 2: Boxplots (Section IV-B) of the normalized best fitness of the MREA with µ = 1 after 150 iterations for all 11 scenarios,
with 75 runs per scenario. Each of the four colors, from left to right, represents one of the algorithm configurations explained in
Section IV-C. Per scenario, the fitness is normalized to the median of rponly. In general, configurations with more mutation
operators (more to the right per scenario) result in a better final fitness. Please refer to Section IV-C2 for more details.

0 1 2 3 4 5 6 7 8 9 10scenario
0

50

100

150

la
st

im
pr

ov
em

en
ti

t.

rponly wnewroute wlinkp wexseg

Fig. 3: Boxplots (Section IV-B) of the last of, in total, 150 iterations in which the MREA with µ = 1 improved its best fitness,
for all 11 scenarios. Each of the four colors, from left to right, represents one of the algorithm configurations explained in
Section IV-C, and each configuration was run 75 times per scenario. Regardless of the scenario, there is a large spread between
runs that get stuck quickly and runs that do not converge within 150 iterations. Please refer to Section IV-C3 for more details.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 8

TABLE I: The median best fitness (lower is better) of the 75 runs (Section IV-B) for each of the settings from Sections IV-C
to IV-E for all 11 scenarios. The column k-Dijkstra states the best possible fitness if all drivers choose the fastest routes,
accounting for delays caused by all drivers using the same street, using Dijkstra’s algorithm. This fitness is beaten by any of
the MREA configurations. Already the fitness values of the weakest configuration rponly are between 35% and 63% of
those of k-Dijkstra. In general, the fitness improves with better configurations (that is, with entries further to the right, for the
columns Mutation Operators and Population Size). The column Crossover Operators shows that the choice of the crossover
operator has almost no impact on the median. Note that the column wexseg is the same as µ = 1 and that µ = 4 is the same
as no_heur due to how we conduct the experiments. Bold numbers indicate a significant change to the previous column
(ignoring the deterministic k-Dijkstra), using the Mann–Whitney U test [31] with a p-value of 0.05.

Mutation Operators (see Section IV-C) Population Size µ (see Section IV-D) Crossover Operators (see Section IV-E)

ID k-Dijkstra rponly wnewroute wlinkp wexseg µ = 1 µ = 2 µ = 4 µ = 8 no_heur heur-all heur- heur-

greed greed-rand

0 153530661 68566307 64240948 64662372 64240948 64240948 61980563 59016819 58128546 59016819 58369109 58128546 59016819

1 186995924 90878267 74610652 74610652 74610652 74610652 74602749 74541545 74541545 74541545 74541545 74541545 74541545

2 28713342 12364817 12292827 12237029 12223856 12223856 12201922 12201922 12201922 12201922 12201922 12201922 12201922

3 92721673 58477361 50558429 51197745 52541858 52541858 49713176 49071681 48625397 49071681 49071681 49071681 49044459

4 86902859 50225754 44211386 44910249 44188815 44188815 43540844 41699314 41699314 41699314 41699314 41699314 41699314

5 103023491 38395379 37639244 37344703 37387321 37387321 37174180 37174180 37174180 37174180 37174180 37174180 37174180

6 101643446 36504804 36353121 36266833 36347074 36347074 36259504 36259504 36259504 36259504 36259504 36259504 36259504

7 40930113 18904046 18764355 18764355 18764355 18764355 18764355 18636335 18558820 18636335 18636335 18716682 18636335

8 12014974 6860945 6407381 6407381 6407381 6407381 6407381 6407381 6407381 6407381 6407381 6407381 6407381

9 394317060 160818584 141236603 140966107 142441589 142441589 134170060 131325658 130535412 131325658 131157891 131088667 131325658

10 57461353 24477839 22899049 22876414 22899049 22899049 22876414 22876414 22876414 22876414 22876414 22876414 22876414

For the latency functions, we follow the recommendation
of the US Bureau of Public Roads [35], that is, we choose
τe(x) = (ℓe/se) · 1.15(x/ce)2 where se, ce, and ℓe denote
free-flow speed, capacity, and length of e, respectively [2].

For the experiments, we consider various settings. For each,
the termination criterion of the MREA is to stop after 150
iterations. The weight of ExSegment (Section III-B4) is chosen
such that it reaches a value of 30 if there was no improvement
in the last 20% · 150 = 30 iterations. We start 75 independent
runs of the MREA on all 11 scenarios per setting.

a) Boxplots: The box denotes the mid-50% of the 75
runs, and the whiskers denote the mid-90%. All remaining
data points are depicted as diamonds.

b) Solution space size: Our results indicate that many
runs with different settings have equal fitness. This suggests
that the solution space is small, highlighting the impact of
adding a new operator.

C. Analysis of the Mutation Operators

We analyze the utility of the MREA’s four mutation opera-
tors (Section III-B) by considering how well each operator
performs on its own (Section IV-C1), how well different
combinations of operators perform (Section IV-C2), as well
as how quickly the algorithm finds a solution that it does not
improve anymore (Section IV-C3). To this end, we do not
employ crossover, and we choose a population size of µ = 1
in order to see how much a single solution can be improved
by solely mutation.

In Section IV-C1, we consider the operators individually,
except for ExSegment (Section III-B4), as it only modifies
existing routes with existing segments and does not explore

new road segments. The configurations of the MREA that each
use a single operator are named as follows:

1) rponly only uses RandomP,
2) wponly only uses LinkWP, and
3) nronly only uses NewRoute.
In Sections IV-C1 and IV-C2, we consider four different

algorithm configurations, starting with a single operator and
then adding more operators:

1) the MREA has only access to RandomP (rponly),
2) rponly but adding NewRoute (wnewroute),
3) wnewroute but adding LinkWP (wlinkp),
4) using all four operators (wexseg).

We note that the wall clock time for all configurations during
these experiments was very similar, with the fitness function
evaluation being the most costly operation.

1) Single best operator: We study the impact of each
configuration on the best fitness achieved after our termination
criterion of 150 iterations. The results are depicted in Figure 1.

For most scenarios, rponly performs best with respect to
the mean best fitness and the top 75%. Between wponly
and nronly, there is no clear distinction which of both it
better in terms of median best fitness. For some scenarios,
wponly is better, for others, nronly. More interestlingly,
if rponly is outperformed, then by wponly. Since both
respective mutation operators are similar, with the difference
that LinkWP uses more specific information than RandomP,
this suggests that it is typically initially better to start with
more random choices (as in RandomP). This is also the
case why rponly is our first configuration in the following
experiments.

2) Operator combinations: We study the impact of the
combined configurations on the best fitness achieved after our

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 9

0 25 50 75 100 125 150

iteration

0.75

1.00

1.25

1.50

1.75

fit
ne

ss
×108

0 25 50 75 100 125 150

iteration

0.75

1.00

1.25

1.50

1.75

fit
ne

ss

×108

Fig. 4: Fitness curves of the mean absolute fitness (bold line) as well as the standard deviation (colored band) per iteration, for
scenario 1. The left plot shows the rponly setting, the right plot shows the wexseg configuration. See also Section IV-C1.

termination criterion of 150 iterations. Our results are depicted
in Figure 2.

Adding NewRoute yields the largest improvement, with a
statistical significance for all scenarios, except for scenario 2.
This could be due to it being very short. Thus, RandomP
and NewRoute become very similar operations. Averaged over
all 11 scenarios, 84% of the wnewroute runs are better and
87% are better or equal to the median of the rponly runs.
For scenarios 4 and 8, all runs of wnewroute are better than
the median of rponly. This is likely a result of scenarios 4
and 8 requiring two almost disjoint routes, which are more
easily found by NewRoute, whereas other scenarios require
two nearly identical routes.

Interestingly, in scenarios 3 and 5, LinkWP and ExSegment
increase the median best fitness. For LinkWP, recall that it
prefers edges with a high capacity. If the best routes do not
use such edges, LinkWP has no benefit. Nonetheless, averaged
over all scenarios, 84% of the wlinkp runs are better and
88% are better or equal to the median of the rponly
runs. For ExSegment, recall that it swaps segments locally
optimally, with respect to the segments randomly chosen.
Escaping from such a local optimum can prove hard in certain
scenarios, especially since we only consider a population size
of 1. Still, on average, 38% of the wexseg runs are better
and 56% are better or equal to the median of the wlinkp
runs, showing a general benefit of ExSegment.

Evaluation of the Fitness Improvement per Iteration: We
analyze rponly and wexseg configurations by considering
the respective fitness curves. Figure 4 depicts the develop-
ment of the average fitness as well as the standard deviation
throughout the 150 iterations for scenario 1.

We observe that the additional operators heavily reduce
the spread of the fitness, not only in the final iteration but
throughout the entire execution of the MREA. The mean
fitness in the wexseg setting is lower than in the rponly
setting. Last, the curve of the wexseg setting shows that in
most runs, the iteration budget of 150 is sufficient as most
runs have converged around iteration 75.

3) Speed of convergence: In order to analyze how quickly
the MREA reaches a local optimum from which it cannot

escape within its budget of 150 iterations, we consider the
last iteration in which the MREA changed the fitness of its
best individual. The results are depicted in Figure 3. Note
that this analysis does not consider the fitness of each run,
only whether it changed in subsequent iterations or not. For
a more complete picture, please also refer to the results from
Section IV-C2, which show that, on average, configurations
with more operators have a better median performance.

The speed of convergence depends on the scenario, and
there is no clear trend among the four configurations. The mid-
90% are generally close to the extreme values of 0 and 150.
Runs close to 0 show that the scenarios are hard, as the MREA
gets stuck very quickly. In contrast, runs close to 150 show that
the budget of 150 iterations was insufficient for convergence.

Conclusion: Averaged over all scenarios, more mutation
operators lead to a better performance. However, this effect
is not very well pronounced for the addition of LinkWP,
indicating that it should possibly be merged with the similar
operator RandomP. Still, using both operators is overall better
than just using RandomP. Further, the large spread in the
speed of convergence among all configurations and scenarios
suggests that the initialization has a large impact on how easy
it is to find improvements, more or less regardless of what
configuration is run. This indicates that a larger population
size may be beneficial, as it increases the initial diversity.

D. Analysis of the Population Size

We analyze to what extent the MREA benefits from having a
population size larger than 1. Since Section IV-C suggests that
local optima pose a problem for the MREA, a larger population
size may help to have alternative solutions to those stuck in
local optima. We do not employ crossover but use all four
mutation operators, that is, we use the wexseg configuration.
Our results are depicted in Figure 5. Note that a higher
population size also means more fitness evaluations, as we let
each configuration run for 150 iterations. This likely explains
the high significances between different configurations.

A larger number of individuals improves the median best
fitness and reduces the spread. Our results suggest that the im-
provement for µ = 2 and µ = 4 provide a large improvement

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 10

0 1 2 3 4 5 6 7 8 9 10scenario
0.9

1.0

1.1

1.2
no

rm
al

iz
ed

fit
ne

ss
1
2
4
8

Fig. 5: Boxplots (Section IV-B) of the normalized best fitness of the MREA after 150 iterations for the 11 scenarios, with 75
runs per scenario. Each of the four colors, from left to right, represents a different population size µ. Per scenario, the fitness
is normalized to the median of µ = 1. In general, a higher population size seems more beneficial, but the gain is diminishing.
Please refer to Section IV-D for more details.

over µ = 1. For µ = 8, the improvement in comparison to
µ = 1 in median and spread is somewhat smaller. Throughout
all scenarios, 61% of the runs with µ = 2 are better and 77%
are better or equal to the median of µ = 1. For the runs with
µ = 4, these numbers increase to 80% and 93%, respectively.
For µ = 8, the increase from µ = 4 is smaller, reaching 88%
better and 98% better or equal runs. When comparing to the
configuration with µ = 2, 40% of the runs with µ = 4 are
better than the median and 85% of the runs are better or equal.
For µ = 8, these numbers increase to 49% and 96%.

Conclusion: Using a larger population size improves the
quality of the best fitness and decreases the spread among
the different runs per scenario. However, the computation
cost increases with the population size, and the quality gain
in fitness from larger populations varies among the different
configurations. Our experiments suggest the sweet spot µ = 4.

E. Analysis of the Crossover Operators

We analyze the utility of the MREA’s three crossover
operators (Section III-C), measuring the overall best fitness
for each operator. To this end, we use all mutation operators,
choose µ = 4, and consider the following configurations using:

1) no crossover (no_heur),
2) Exhaustive Crossover (heur-all),
3) Greedy Crossover (heur-greed), or
4) Randomized Greedy Crossover (heur-greed-rand).

Our results are depicted in Figure 6. The advantage of
crossover strongly depends on the scenario and none are
significant. However, averaged over all 11 scenarios, the
median best fitness as well as the spread is always reduced
when using a crossover operator in comparison to using no
crossover. This is also true for the minimum and maximum
normalized fitness, highlighting the reduction of outliers. In-
terestingly, heur-all does not have a large benefit over
the two greedy operators. Considering the two greedy strate-
gies, on average, 19% of the heur-greed runs are better
and 72% are better or equal to the median of no_heur;

for heur-greed-rand, we get 18% and 74%, respec-
tively. There is no clear tendency whether heur-greed or
heur-greed-rand performs better.

Conclusion: In general, crossover improves the result qual-
ity of the MREA and reduces its spread. Among the different
crossover operators, Exhaustive Crossover performs best but
only slightly. Considering its high computation cost compared
to the other two operators, it should not be chosen. Greedy
Crossover and Randomized Greedy Crossover provide very
good alternatives, each performing roughly equally well.

F. Analysis of the Selection Strategy

The MREA uses an elitist selection strategy, known as
truncation selection (line 23). Such strategies get trapped in
local optima, from which it can be hard to escape. In order
to prevent this, a non-elitist strategy could be better. Thus,
we exchange the elitist selection of the MREA (line 23)
with a non-elitist strategy. To this end, we consider binary
tournament selection with a tournament size of 2. This means
that, instead of selecting the µ best individuals from the
population consisting of parent individuals as well as off-
spring from mutation and potentially crossover, we repeat the
following steps µ times, each time selecting an individual
for the parent population of the next iteration: Choose two
individuals uniformly at random (with replacement) and select
the one with the better (that is, smaller) fitness. Note that the
random selection of individuals does not guarantee that the
best individuals are going to be part of the parent generation
of the next iteration.

The results are depicted in Figure 7. We note that the
experiments return in both cases the best fitness found in any
of the 150 iterations. For the elitist selection, an individual
of this fitness is in the final population. However, for the
tournament selection, such an individual could have been
removed in a previous iteration, as the strategy is non-elitist.
Still, the elitist selection outperforms the tournament selection
with respect to both the mean fitness and the spread, except

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 11

0 1 2 3 4 5 6 7 8 9 10scenario

1.00

1.05

1.10

1.15

no
rm

al
iz

ed
fit

ne
ss

no_heur
heur-all
heur-greed
heur-greed-rand

Fig. 6: Boxplots (Section IV-B) of the normalized best fitness of the MREA after 150 iterations for the 11 scenarios, with 75 runs
per scenario. Each of the four colors, from left to right, represents one different crossover operator (including no crossover).
Per scenario, the fitness is normalized to the median of no_heur. The configuration heur-all performs best, but only
slightly. There is no clear difference between heur-greed and heur-greed-rand. In general, using crossover reduces
the spread of the results. Please refer to Section IV-E for more details.

for scenarios 1 and 8, where they are tied. Interestingly,
scenario 10 is also easily solved with the elitist selection, but
the tournament selection struggles a lot and always returns
the same (bad) fitness. This might indicate that, for this
scenario, there is a local optimum which can be escaped via
the mutation and crossover operators but only given sufficient
time. The elitist selection strategy guarantees that there is
always a currently best solution available to improve. For the
tournament selection, such a solution can be removed, making
it harder to overcome the local optimum via mutation and
crossover.

Conclusion: The elitist selection of the MREA appears to
be a reasonable choice that might be even well suited to escape
local optima.

V. APPLICATION TO THE SAP PROBLEM

We apply the MREA to the SINGLE-ALTERNATIVE-PATH
(SAP) problem [2] and empirically investigate its performance
in terms of solution quality and run time (Section V-B). The
SAP problem is a special case of the MR problem that fixes
a route between s and t and aims to find a single alternative
route such that the overall travel time is minimized. Although
the problem remains NP-hard, Bläsius et al. [2] propose a
highly specialized algorithm that solves it optimally – the SAP
baseline (SAP-B) –, which we compare the MREA against.

As the SAP problem is a special case of the MR problem,
the complexity of the MREA reduces in certain aspects. Fur-
ther, we adjust the MREA using the insights from Section IV.
We call the resulting algorithm the SAP-EA (Section V-A).

A. The SAP-EA
The SAP-EA is a specialization of the MREA for the SAP

problem with some modifications to its mutation operators.
Since the SAP problem aims to find a single alternative route,
an individual in the SAP-EA corresponds to a single route.
Further, since determining a user equilibrium for the SAP

problem simplifies to equalizing the cost functions of the
given and the alternative route, which results in solving a
quadratic equation, the SAP-EA does not use the FRANK–
WOLFE algorithm for fitness evaluation.

Regarding the operators from Sections III-B and III-C,
the SAP-EA does not employ crossover, as these operators
exchange existing routes, which is pointless for a single
route. For the same reason, ExSegment is not used. Out of
the remaining operators, NewRoute is used unmodified, and
RandomP and LinkWP are combined into the new operator
RandomPwD. This is due to our results from Section IV-C
showing that LinkWP only provides a small benefit when
added but still has its merits for certain scenarios. Last,
the SAP-EA always performs exactly one mutation on each
individual, using a parameter p ∈ (0, 1) instead of operator
weights. With probability p, NewRoute is performed, other-
wise RandomPwD.

In the following, we explain the new operator RandomPwD
and then compare the SAP-EA to the SAP-B.

1) RandomPwD: Similar to RandomP, given a route R of
length m, RandomPwD replaces a segment of R between two
nodes a and b that are k apart via RD. RandomPwD uses a
parameter δ ∈ [0, 1]. It determines k ∼ N(δ ·m, (0.05 ·m)2),
rounding to the closest whole number, chooses a uniformly at
random, and chooses b such that it is k nodes after a. If there
are fewer than k nodes after a, then b = t.

RandomPwD adjusts δ according to two parameters α ∈
[0, 1] and β ∈ N>0 in the following way: whenever the SAP-
EA does not improve for β iterations, we update δ ← α · δ.

2) Comparison to the SAP-B: Although the SAP-EA is
specialized for the SAP problem, it is still a general heuristic
applicable to different fitness functions. In contrast, the SAP-
B is explicitly tailored to solving the SAP problem with
monotone cost functions per edge, such as the flow of traffic,
as in our setting. Thus, the SAP-B fails for other costs, for
example, when optimizing for overall low CO2 emissions of

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 12

0 1 2 3 4 5 6 7 8 9 10scenario
1.0

1.5

2.0

2.5
no

rm
al

iz
ed

fit
ne

ss
elitist
tournament

Fig. 7: Boxplots (Section IV-B) of the normalized best fitness of the MREA after 150 iterations for the 11 scenarios, with 75
runs per scenario. The MREA employs all mutation operators (Section III-B), the heur-greed crossover (Section III-C),
and a population size of µ = 4. For each scenario, the left box (in blue) refers to the MREA with (standard) elitist truncation
selection (Algorithm 2), and the right box (orange) refers to the MREA using binary tournament selection. For both selection
strategies, the best overall fitness is returned. Per scenario, the fitness is normalized to the median. The elitist selection is never
worse than the tournament selection and usually clearly outperforms it. Please refer to Section IV-F for more details.

strategic drivers in a street network. In such a setting, the
SAP-EA is still applicable without change.

B. Empirical Investigations

We compare the SAP-EA to the SAP-B on the street
network of Berlin, Germany, with respect to best fitness as well
as run time. Recall that the SAP-B is an optimal algorithm.
Thus, the SAP-EA cannot achieve a better best fitness.

In the following, we explain the setup and the evaluation of
the experiments we carried out.

1) Experimental Setup: We use the same setup as in
Section IV-B, with the following differences. We consider 25
scenarios chosen uniformly at random from the set of cluster
centers of s–t pairs, computed by the BIRCH [36] algo-
rithm. The clustering is based on real-world traffic den-
sity data provided by TomTom Germany. Per scenario, we
choose k ∈ {500, 1000, 1500, 2000} and p ∈ {0.0, 0.01, 0.05,
0.1, 0.2, 0.3, 0.4}, and we perform 20 runs per value of k
and p. For the SAP-EA, we choose µ = 1, and we terminate it
after 1000 iterations or whenever it does not improve for 100
iterations. We used a machine with two Intel Xeon Gold 5118
CPUs and 64GiB of memory.

2) Experimental Evaluation: Our results are depicted in
Figure 8. The maximum of all medians in the fitness ratio
is 1.009, for p = 0, which is already very close to an
optimal fitness. The median decreases up to p = 0.2 and
increases afterward. Further, the spread is smallest for p = 0.2,
making this configuration preferable. However, the run time
ratio increases for higher values of p both in median and
spread, as RandomPwD is computationally more expensive
than NewRoute. Since the configuration with p = 0.05 is very
close to the best configuration, both in fitness and time, we
deem it the best configuration out of all.

Fig. 8: The ratio of the best fitness (left) and the run time
(right) of the SAP-EA with µ = 1, α = 0.4, β = 35,
and different values of p compared to the SAP-B. The run
times of SAP-B range from 0.3 seconds to 30 minutes, with
better time ratios for higher SAP-B run times. Each boxplot
contains the data of all 20 runs per value of k and per each
of the 25 scenarios, totaling to 2000 points per box. The
orange line depicts the median, the box the mid-50% of the
data, and the whiskers the mid 95%. A higher value of p,
i.e., an increased use of RandomPwD, yields generally better
solutions and a smaller spread but also increases the run time.
A sweet spot seems to be around p = 0.05. Please also refer
to Section V-B2.

VI. CONCLUSION

We introduced and empirically analyzed the MULTIPLE-
ROUTES EA, an evolutionary algorithm designed to suggest
alternative routes for street networks with a high flow of
traffic with the aim to reduce the overall travel time of all
drivers. To this end, we introduced the NP-hard MULTIPLE-
ROUTES problem, allowing for a precise modeling of our
setting. For the MREA, we proposed four mutation and three
crossover operators. We found that using all mutation operators

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 13

yields the best results and that each crossover operator reduces
the spread of the results. Last, we applied the MREA to a
more specific setting of finding a single alternative route to a
given route. We compared it to a highly specialized optimal
algorithm and found that the MREA is capable of competing
with the tailored algorithm while often being faster.

Overall, our results suggest that the MREA is well-suited for
the highly complex problem of distributing traffic. For future
work, we propose to extend the MREA to island models [37],
a parallelization method well suited for EAs [38]. Another
direction is to use data sets that measure other criteria, for
example, the emission of cars. We believe that the MREA is
well suited for such settings. Last, it would be interesting to see
what the impact of the different operators is if one considers
MULTIPLE-ROUTES with more than two routes. In this setting,
the crossover operators become more expensive but might in
turn reduce the spread in the final fitness more drastically.
Also, the complexity of single routes might increase, which
could affect the runtime of the mutation operators.

ACKNOWLEDGMENTS

We thank TomTom Location Technology Germany GmbH
for supplying us with the data necessary for our experiments.
Further, we thank Galassi et al. [34] for the GNU Scientific
Library and Dagum and Menon [33] for OpenMP.

REFERENCES

[1] M. Böther, L. Schiller, P. Fischbeck, L. Molitor, M. S. Krejca, and
T. Friedrich, “Evolutionary minimization of traffic congestion,” in Pro-
ceedings of the Genetic and Evolutionary Computation Conference
(GECCO), 2021.

[2] T. Bläsius, M. Böther, P. Fischbeck, T. Friedrich, A. Gries, F. Hüffner,
O. Kißig, P. Lenzner, L. Molitor, L. Schiller, A. Wells, and S. Wietheger,
“A strategic routing framework and algorithms for computing alternative
paths,” in Proceedings of the Symposium on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems (ATMOS), 2020.

[3] N. Cohn. (2019) The TomTom traffic index: An objective measure of
urban traffic congestion. [Online]. Available: https://www.tomtom.com/
blog/road-traffic/urban-traffic-congestion/

[4] M. A. van Essen, “The potential of social routing advice,” Ph.D.
dissertation, University of Twente, 2018.

[5] A. Kröller, F. Hüffner, Łukasz Kosma, K. Kröller, and M. Zeni, “Driver
expectations towards strategic routing,” Transportation Research Record,
2021.

[6] H. Bast, D. Delling, A. V. Goldberg, M. Müller Hannemann, T. Pajor,
P. Sanders, D. Wagner, and R. F. Werneck, “Route planning in trans-
portation networks,” in Algorithm Engineering: Selected Results and
Surveys, 2016.

[7] E. Köhler, R. H. Möhring, and M. Skutella, “Traffic networks and flows
over time,” in Algorithmics of Large and Complex Networks, 2009.

[8] D. Delling and D. Wagner, “Time-dependent route planning,” in Ro-
bust and Online Large-Scale Optimization: Models and Techniques for
Transportation Systems, 2009, pp. 207–230.

[9] U. Demiryurek, F. Banaei-Kashani, and C. Shahabi, “A case for time-
dependent shortest path computation in spatial networks,” in Proceedings
of the International Conference on Advances in Geographic Information
Systems (SIGSPATIAL), 2010.

[10] D. Delling, “Time-dependent SHARC-routing,” Algorithmica, vol. 60,
no. 1, 2009.

[11] G. Nannicini, D. Delling, D. Schultes, and L. Liberti, “Bidirectional
A* search on time-dependent road networks,” Networks, vol. 59, no. 2,
2011.

[12] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “Alternative
routes in road networks,” Journal of Experimental Algorithmics, vol. 18,
2013.

[13] A. Paraskevopoulos and C. D. Zaroliagis, “Improved alternative route
planning,” in Proceedings of the Symposium on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems (ATMOS),
2013.

[14] S. Zhu and D. Levinson, “Do people use the shortest path? An empirical
test of Wardrop’s first principle,” PLOS ONE, vol. 10, no. 8, pp. 1–18,
2015.

[15] D. Simon, Evolutionary Optimization Algorithms. Wiley-Blackwell,
2013.

[16] K. Deb and C. Myburgh, “Breaking the billion-variable barrier in
real-world optimization using a customized evolutionary algorithm,” in
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO), 2016.

[17] J. Berger and M. Barkaoui, “A hybrid genetic algorithm for the ca-
pacitated vehicle routing problem,” in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), 2003.

[18] J.-Y. Potvin, “State-of-the art review—evolutionary algorithms for ve-
hicle routing,” INFORMS Journal on Computing, vol. 21, no. 4, pp.
518–548, 2009.

[19] T. Bläsius, M. Böther, P. Fischbeck, T. Friedrich, A. Gries, F. Hüffner,
O. Kißig, M. S. Krejca, P. Lenzner, L. Molitor, L. Schiller, A. Wells,
and S. Wietheger. (2021) Strategic routing GitHub repository. [Online].
Available: https://github.com/MaxiBoether/strategic-routing

[20] T. Roughgarden and E. Tardos, “How bad is selfish routing?” Journal
of the ACM, vol. 49, no. 2, p. 236–259, 2002.

[21] S. Fortune, J. Hopcroft, and J. Wyllie, “The directed subgraph homeo-
morphism problem,” Theoretical Computer Science, vol. 10, no. 2, pp.
111 – 121, 1980.

[22] J. G. Wardrop, “Some theoretical aspects of road traffic research,”
Proceedings of the Institution of Civil Engineers, vol. 1, no. 3, pp. 325–
362, 1952.

[23] J. F. Nash, “Equilibrium points in n-person games,” Proceedings of the
National Academy of Sciences, vol. 36, no. 1, pp. 48–49, 1950.

[24] M. J. Beckmann, C. B. MacGuire, and C. B. Winsten, Studies in the
Economics of Transportation. Yale University Press, 1956.

[25] S. Dafermos, “Traffic equilibrium and variational inequalities,” Trans-
portation Science, vol. 14, no. 1, pp. 42–54, 1980.

[26] M. Frank and P. Wolfe, “An algorithm for quadratic programming,”
Naval Research Logistics Quarterly, vol. 3, no. 1-2, pp. 95–110, 1956.

[27] M. Patriksson. (2003) The Frank–Wolfe algorithm. [Online].
Available: http://www.math.chalmers.se/Math/Grundutb/CTH/tma946/
0203/fw_eng.pdf

[28] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, p. 269–271, 1959.

[29] R. Bauer and D. Delling, “SHARC: Fast and robust unidirectional
routing,” Journal of Experimental Algorithmics, vol. 14, 2009.

[30] N. Aviram and Y. Shavitt, “Optimizing Dijkstra for real-world perfor-
mance,” arXiv, 2015.

[31] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The Annals of
Mathematical Statistics, vol. 18, no. 1, pp. 50–60, 1947.

[32] A. Horni, K. Nagel, and K. W. Axhausen, The Multi-Agent Transport
Simulation MATSim. Ubiquity Press, 2016.

[33] L. Dagum and R. Menon, “OpenMP: An industry standard API for
shared memory programming,” IEEE Computational Science and Engi-
neering, vol. 5, no. 1, pp. 46–55, 1998.

[34] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken,
M. Booth, F. Rossi, and R. Ulerich, GNU Scientific Library Reference
Manual. Network Theory Ltd., 2019.

[35] United States Bureau of Public Roads, Office of Planning, Urban
Planning Division, Traffic Assignment Manual for Application with a
Large, High Speed Computer, 1964.

[36] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An efficient data
clustering method for very large databases,” in Proceedings of the
International Conference on Management of Data (SIGMOD), 1996.

[37] J. P. Cohoon, S. U. Hegde, W. N. Martin, and D. S. Richards, “Punc-
tuated equilibria: A parallel genetic algorithm,” in Proceedings of the
International Conference on Genetic Algorithms and Their Application,
1987.

[38] E. Alba, G. Luque, and S. Nesmachnow, “Parallel metaheuristics: recent
advances and new trends,” International Transactions in Operational
Research, vol. 20, no. 1, pp. 1–48, 2013.

https://www.tomtom.com/blog/road-traffic/urban-traffic-congestion/
https://www.tomtom.com/blog/road-traffic/urban-traffic-congestion/
https://github.com/MaxiBoether/strategic-routing
http://www.math.chalmers.se/Math/Grundutb/CTH/tma946/0203/fw_eng.pdf
http://www.math.chalmers.se/Math/Grundutb/CTH/tma946/0203/fw_eng.pdf

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 14

Maximilian Böther received his M.Sc. degree in IT-
Systems Engineering from Hasso Plattner Institute,
University of Potsdam, Germany, in 2022. Since
2022, he is a Ph.D. student in the Systems group
of ETH Zurich, Switzerland. His research inter-
ests cover the intersection of data management and
machine learning, and he is currently building a
platform for model training on dynamically growing
data sets.

Leon Schiller received his B.Sc. degree in IT-
Systems Engineering from Hasso Plattner Institute
in 2020 and is currently pursuing an M.Sc. degree
in the same field. His research interests are in the
area of probabilistic methods, centered around the
analysis of random-graph models, randomized algo-
rithms, and evolutionary optimization techniques.

Philipp Fischbeck received his M.Sc. degree in IT-
Systems Engineering from Hasso Plattner Institute,
University of Potsdam, Germany, in 2018. Since
then, he is a PhD student at the Algorithm Engi-
neering group of the Hasso Plattner Institute. His
research interests are random-graph models and how
they can be used to predict and explain real-world
graph algorithm behavior, and to build improved
algorithms.

Louise Molitor received her M.Sc. degree in com-
puter science from Martin Luther University Halle-
Wittenberg, Germany, in 2017. Since then, she is
a PhD student at the Algorithm Engineering group
of the Hasso Plattner Institute. Her research interests
are in the area of algorithmic game theory, in particu-
lar, in strategic behavior in multi-agent systems and
game-theoretic analysis of models from residential
segregation.

Martin S. Krejca received his PhD in computer
science from Hasso Plattner Institute, University of
Potsdam, Germany, in 2019. Since 2022, he is an as-
sistant professor at Ecole Polytechnique, Palaiseau,
France. His research interests include the theoretical
analysis of random processes, especially black-box
optimization heuristics.

Tobias Friedrich received his PhD in computer
science from Saarland University, Saarbrücken, Ger-
many, in 2007. From 2012 to 2015, he was a full
professor and the chair of theoretical computer sci-
ence with University of Jena, Germany. Since 2015,
he is a full professor with the University of Potsdam,
Germany, and the head of the Algorithm Engineering
group, Hasso Plattner Institute, Potsdam. His current
research interests include randomized methods in
mathematics and computer science and randomized
algorithms (both classical and evolutionary).

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 15

SUPPLEMENTARY MATERIAL

This document adds additional information to the paper
titled Evolutionary Minimization of Traffic Congestion.

Mutation and Crossover Operators

We provide illustrations and examples for the ExSegment
mutation operator (Section III-B4) as well as the crossover
operators (Section III-C).

Recall that in the ExSegment operator, we first choose a pair
of paths uniformly at random from an individual. Figure 9
shows an example of how the exchange of route segments
between the two chosen paths is performed.

All crossover operator variants are based on the following
structure: We choose two parents (consisting of n routes each),
and together they form 2n routes. In order to choose n routes
among them, a diversity score is applied, which estimates how
diverse a set of routes is. For the exhaustive crossover, all
possible choices of n out of the 2n routes are considered, while
for the greedy crossover, we gradually choose the next route
that minimizes the new diversity score. For randomized greedy
crossover, the greedy choice for minimization is replaced by
a random choice proportional to the inverse of the diversity
score. Figure 10 visualizes this process.

0

1

4

2

3

5

6

87

9

0

1

4

2

3

5

6

87

9

⇒

s s

t t

Fig. 9: An example for the ExSegment operator (Sec-
tion III-B4). In this case, s = v0, t = v9, and the two paths are
visualized in orange and blue, respectively, with their shared
sections in red (left). After removing the cycles, only the red
parts remain, leading to the set of divergence points v1 and v6,
while the goto points are v5 and v9. Choosing randomly from
the divergence points, and then from the set of goto points
coming after the chosen point, this choice could be v1 and v5.
The two paths swap their road segments between the chosen
points, visualized on the right.

Parent 1 Parent 2

1

Offspring

2 3

Fig. 10: A visualization of the crossover process (Sec-
tion III-C). Each parent consists of n = 2 routes, making up
4 routes in total: red, green, yellow, and blue. When creating
the offspring, we might first randomly choose the yellow route
from parent 1, and then to minimize the diversity score D, the
blue route from parent 2. The exact choice of offspring routes
depends on the diversity score and crossover variant.

	Introduction
	The Multiple-Routes Problem
	Problem Modeling
	NP-Hardness of Multiple-Routes
	The User Equilibrium
	Frank–Wolfe Algorithm for User Equilibria
	Step Size Determination

	The Multiple-Routes EA
	RandDijkstra
	Mutation Operators
	NewRoute
	RandomP
	LinkWP
	ExSegment

	Crossover Operators
	Exhaustive Crossover
	Greedy Crossover
	Randomized Greedy Crossover

	Parameter Evaluation
	Implementation Details
	Experimental Setup
	Analysis of the Mutation Operators
	Single best operator
	Operator combinations
	Speed of convergence

	Analysis of the Population Size
	Analysis of the Crossover Operators
	Analysis of the Selection Strategy

	Application to the SAP Problem
	The SAP-EA
	RandomPwD
	Comparison to the SAP-B

	Empirical Investigations
	Experimental Setup
	Experimental Evaluation

	Conclusion
	References
	Biographies
	Maximilian Böther
	Leon Schiller
	Philipp Fischbeck
	Louise Molitor
	Martin S. Krejca
	Tobias Friedrich

