
Vol.:(0123456789)

Artificial Intelligence and Law
https://doi.org/10.1007/s10506-022-09315-w

1 3

ORIGINAL RESEARCH

Law Smells

Defining and Detecting Problematic Patterns in Legal Drafting

Corinna Coupette1,2  · Dirk Hartung2,3  · Janis Beckedorf2,4  ·
Maximilian Böther5  · Daniel Martin Katz2,3,6

Accepted: 1 May 2022
© The Author(s) 2022

Abstract
Building on the computer science concept of code smells, we initiate the study
of law smells, i.e., patterns in legal texts that pose threats to the comprehensibil-
ity and maintainability of the law. With five intuitive law smells as running exam-
ples—namely, duplicated phrase, long element, large reference tree, ambiguous
syntax, and natural language obsession—, we develop a comprehensive law smell
taxonomy. This taxonomy classifies law smells by when they can be detected, which
aspects of law they relate to, and how they can be discovered. We introduce text-
based and graph-based methods to identify instances of law smells, confirming their
utility in practice using the United States Code as a test case. Our work demonstrates
how ideas from software engineering can be leveraged to assess and improve the
quality of legal code, thus drawing attention to an understudied area in the intersec-
tion of law and computer science and highlighting the potential of computational
legal drafting.

Keywords  Refactoring · Software engineering · Law · Natural language processing ·
Network analysis

 *	 Corinna Coupette
	 coupette@mpi-inf.mpg.de

 *	 Dirk Hartung
	 dirk.hartung@law-school.de

1	 Max Planck Institute for Informatics, Saarbrücken, Germany
2	 Center for Legal Technology and Data Science, Bucerius Law School, Hamburg, Germany
3	 CodeX - The Stanford Center for Legal Informatics, Stanford Law School, Stanford, CA, USA
4	 Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
5	 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
6	 Illinois Tech - Chicago Kent College of Law, Chicago, IL, USA

http://orcid.org/0000-0001-9151-2092
http://orcid.org/0000-0002-1916-4879
http://orcid.org/0000-0001-9672-9928
http://orcid.org/0000-0003-4093-4361
http://crossmark.crossref.org/dialog/?doi=10.1007/s10506-022-09315-w&domain=pdf

	 C. Coupette et al.

1 3

1  Introduction

In modern societies, law is one of the main tools to regulate human activities. These
activities are constantly changing, and law co-evolves with them. In the past dec-
ades, human activities have become increasingly differentiated and intertwined,
e.g., in developments described as globalization or digitization. Consequently, legal
rules, too, have grown more complex, and statutes and regulations have increased
in volume, interconnectivity, and hierarchical structure (Katz et al. 2020; Coupette
et al. 2021a).

A similar trend can be observed in software engineering, albeit on a much shorter
time scale. The global codebase has grown exponentially in recent years (Yu et al.
2014), with GitHub as the largest source code host alone accounting for 250 million
repositories between 2008 and 2020.1 Over the course of its growth, this codebase
has become increasingly interconnected when viewed through the lens of network
analysis (Lima et al. 2014). Naturally, software engineers have turned to technology
to keep track of this development and manage code interdependencies. While the
challenges for law and software engineering and the constraints within which these
challenges must be addressed are not identical, both domains share three important
characteristics: Materially, their subject matters, legal rules on the one hand and
code fragments on the other hand, contain commands intended to control (human or
machine) behavior in order to achieve specific outcomes. Procedurally, output crea-
tion in both law and software engineering is distributed in time and space, and thus,
both domains are subject to the challenges of dynamic multi-agent systems. Meth-
odologically, lawyers and software engineers alike use abstractions to accommodate
problems that are not fully known in the present.

The similarities between the law and software engineering domains suggest pos-
sibilities for knowledge transfer between them. In this paper, we explore one such
possibility for the software engineering subfield of refactoring. Introduced into aca-
demic discourse by Opdyke and Johnson (1990) and popularized by Becker et al.
(1999) (Second Edition: Fowler 2018), refactoring “describes a disciplined tech-
nique for restructuring an existing body of code, altering its internal structure with-
out changing its external behavior.”2 In software engineering, refactoring is indis-
pensable for ensuring software quality and maintainability, and it is also subject to
vivid academic discourse, inspiring detailed analyses of large code bases and even
dedicated conferences.3 This has resulted in an actionable understanding of how var-
ious variables— e.g., programming language, team size, project size, or commit size
(Ray et al. 2017), repetition and duplicated code (Lopes et al. 2017), or component
size and open source model (Stamelos et al. 2002)— impact code quality.

In this paper, we demonstrate how concepts from refactoring can be used in law,
focusing on the example of code smells. At a high level, a code smell is a char-
acteristic of (a part of) the source code that may indicate a deeper problem in its

1  According to https://​octov​erse.​github.​com, 60 million repositories were created in 2020.
2  Cf. https://​refac​toring.​com/.
3  Cf. http://​www.​msrco​nf.​org/.

https://octoverse.github.com
https://refactoring.com/
http://www.msrconf.org/

1 3

Law Smells﻿	

design and implementation, highlighting a need for refactoring (Tufano et al. 2015).
We port this idea to the legal domain, introducing the concept of law smells. Law
smells constitute the first step towards both (semi-)automatically detecting problem-
atic parts of existing codifications and (semi-)automatically improving codification
quality. They also pave the path towards reproducible, quantitative quality measures
for collections of legal rules, which allow us to assess the overall law climate and
facilitate automatic code review and quality assurance.

The remainder of this paper is structured as follows. In Sect. 2, we present
related literature from law and computer science, along with interdisciplinary work
in the intersection of both fields. We develop the concept of law smells, guided by
five illustrative examples, in Sect. 3, and describe methods to detect law smells in
Sect. 4. In Sect. 5, we demonstrate the utility of our methods for detecting five exam-
ple smells, deliberately showcasing a variety of ways to present law smell detection
results to end users. We discuss the limitations of our approach along with opportu-
nities for future work in Sect. 6, and conclude in Sect. 7.

2 � Related work

Given its interdisciplinary nature, our work relates to prior research in law, in com-
puter science, and in the intersection of both fields. In the legal domain, the question
of what constitutes high-quality law is the realm of legislative theory (Noll 1973),
sometimes also referred to as legisprudence (Wintgens 1999). Within this wider
field, our work is most closely related to research on legislative drafting, which,
inter alia, develops suggestions to mitigate law smells. Therefore, our work should
be read in light of the debate on drafting manuals and other guidelines for the legis-
lative process (cf. van Lochem and Westerman 2010; Xanthaki 2010). While there
exist handbooks that cover a wide range of drafting techniques and best practices
(cf. Xanthaki 2014), our work helps detect where these can be applied to improve
existing legal texts. Our improvements do not focus on criteria such as coherence,
precision (cf. Karpen 2008), or “plain” language (cf. Butt 2013), which are subject
to an adjacent debate (cf. Mousmouti 2012; Xanthaki 2011). Moreover, there is
extensive doctrinal debate on the use of digital technology in the legislative process
(cf. Dorsey 2014; Sartor 2008), for which law smells in legislative documents are an
example.

In computer science, this paper draws inspiration from the work by Fowler (2018)
as laid out in Sect. 1. As the survey by Sharma and Spinellis (2018) demonstrates,
code smells or software smells are subject to extensive research, including in-depth
studies on their limitations, interactions, and relations to other concepts such as soft-
ware design ideas (cf. Yamashita 2013; Speicher 2020). Since the transfer of code
smells to the legal domain is in an early stage, no meta-analysis currently exists for
law smells, and we are only beginning to understand their prevalence and impact.

While the use of some concepts from mathematics or computer science, such as
symbolic or deontic logic (cf. Allen 1957; Allen and Engholm 1980), or domain-
specific (markup) languages (cf. Allen and Saxon 1995), in legal drafting has been
debated for several decades (cf. Saxon 1982; Ziegler 1989), few publications in the

	 C. Coupette et al.

1 3

intersection of law and computer science have used ideas from software engineer-
ing (e.g., debugging Fungwacharakorn et al. (2021)) in the legal domain. Among
these, the work by Li et al. (2015) is most similar to ours, as the authors adapt four
code quality metrics to legal texts in order to quantitatively assess the quality of
the United States Code. The metrics they select differ from ours, however, and the
results are not embedded in an overarching conceptual framework. Our work shares
the goal of improving legislative texts using insights from computer science with
papers applying computer science techniques to improve statutory texts directly
(e.g., measuring and improving readability; cf. Alschner et al. 2020; Curtotti et al.
2015). Also related to our topic is the study by Marcus (2012), which introduces
fifteen types of legal programming errors in telecommunication law and discusses
ways to resolve them. While starting from a similar point of departure, our work is
distinct in that it provides operational tools to detect the deficiencies of and advo-
cates for solutions independent from specific programming paradigms. Finally,
the tools presented in this paper could be used as a building block for legal draft-
ing software, whose potential (including, e.g., the automatic detection of conflicts
between individual provisions by Li et al. (2013), or in-domain style checking by
Sugisaki (2016)) has been explored in prior work (cf. Moens 2006; Hafner and Lau-
ritsen 2007) or combined with existing approaches to detect undesired patterns in
statutory texts Markovich and Hamp (2015). As such, our ideas relate to the grander
vision of a computerized legal information (retrieval) system (Bing 1988; Liebwald
2015), which has been discussed for several decades, yet will probably never be
fully developed (Bing 2010). Our concept of law smells is much more narrow but
directly applicable to existing corpora of legal texts. Hence, unlike a computerized
legal information (retrieval) system, its implementation does not require large infra-
structure investments.

3 � Theory: What are law smells?

In this section, we make the notion of a law smell more precise (3.1), illustrate it
via examples (3.2), and develop a taxonomy of law smells that prove particularly
problematic in practice (3.3). For conciseness, we refer to the government parties
involved in creating legal rules as lawmakers (e.g., parliaments or agencies), to the
parties affected by such legal rules as lawtakers (e.g., law firms, companies, and
citizens), to people with a legal education as lawyers (e.g., judges, attorneys, and
legal scholars), and to the labeled, often nested units of legal texts as elements of law
(e.g., Titles, Chapters, Sections, and Subsections of the United States Code).

1 3

Law Smells﻿	

3.1 � Definition

A code smell, as understood by Fowler (2018), is “a surface indication that usually
corresponds to a deeper problem in the system.”4 Making only small changes to this
statement, we arrive at our working definition of a law smell:

Definition 1  (Law Smell) A law smell is a surface indication that usually corre-
sponds to a deeper problem in a legal system.

To clarify what this means, we highlight the most important building blocks of
our definition.5 First, a law smell is a surface indication: It can be easily identified,
perhaps algorithmically, from the words and the structure of a legal text— even with
very limited semantic knowledge. Second, the problem indicated by a law smell
concerns a legal system, which—regardless of how exactly we define it6 — goes
beyond the body of rules in which the problem is identified (for example, a smell
discovered in the text of a regulation can indicate a problem in the statute-making
process). Third, the indicated problem is a deeper problem, that is, an aspect of the
design of a legal system that affects its usability for at least one of its stakeholders—
e.g., by making it harder to maintain (for lawmakers) or to navigate (for lawtakers).
Finally, a law smell only usually indicates a problem, i.e., upon closer inspection, it
can turn out to be harmless or even necessary, given the legal rules that need to be
expressed. From a practical perspective, law smells can tell us where we should look
to improve the legal system (as lawmakers) or where we should pay extra caution (as
lawtakers).

So far, we have defined law smells in terms of their form and their consequences.
To capture their content, we propose to characterize each law smell systematically,

Table 1   Categories used in a law smell profile

Category Question

1 Description What is it?
2 Problem Why is it problematic?
3 Detection How do we detect it?
4 Mitigation If we decide that it needs mitiga-

tion, how can we mitigate it?
5 Example For illustration, how does it mani-

fest in practice?

4  Cf. https://​marti​nfowl​er.​com/​bliki/​CodeS​mell.​html.
5  Some of the following clarifications are adapted to the legal domain from clarifications found for the
code smell definition at https://​marti​nfowl​er.​com/​bliki/​CodeS​mell.​html.
6  Defining what a legal system is, or when it exists, is a classic question in legal theory, see, e.g., Hart
(1961); Raz (1970/1980); Luhmann (1987).

https://martinfowler.com/bliki/CodeSmell.html
https://martinfowler.com/bliki/CodeSmell.html

	 C. Coupette et al.

1 3

using the five categories laid out in Table 1. We refer to the resulting overview as a
law smell profile. For a given law smell, a law smell profile sketches (1) what the
law smell is and (2) why it is problematic. It summarizes (3) how we might detect
the smell and (4) how we might mitigate it, and gives (5) at least one illustrative
example.

3.2 � Examples

We now introduce some particularly intuitive example law smells, which will
accompany us throughout the paper. To maximize comprehensibility for read-
ers with computer science or legal backgrounds, we choose law smells that can be
derived both via adaptation of the code smells known from the software engineer-
ing literature (e.g. Fowler 2018) and by appealing to the intuition and experience of
lawyers. As the primary objective is to build intuition, our discussion is deliberately
brief, and we detail the structured profiles of our example law smells in the Sup-
plementary Information. We provide a broader view of the law smell landscape in
Sect. 3.3, elaborate on the critical question of law smell detection in Sect. 4, and
assess the practical prevalence of our example smells in Sect. 5.

3.2.1 � Duplicated phrase

Duplicated phrase is the legal equivalent of the software engineering code smell
duplicated code. Lawyers smell it when they get the feeling that a text is verbose and
repetitive. More formally, a duplicated phrase is a phrase above a specified length
that has more than a specified number of occurrences in a legal text. Here, we con-
strue “phrase” broadly and allow phrases to have parameters. That is, a phrase is
a nonempty sequence of terms, where a term is either a token (i.e., a sequence of
non-whitespace characters roughly corresponding to a word) or a placeholder for an
argument that is itself a phrase (e.g., “not later than {period} after {date}”).

Duplicated phrases are problematic because they increase the risk of inconsist-
encies introduced by incomplete edits, and because they communicate legal con-
tent inefficiently. We can detect duplicated phrases using scalable variants of n-gram
search, possibly after some preprocessing, where, for intuitive results, the length and
occurrence thresholds should be adaptive and inversely correlated— i.e., the longer
a phrase, the fewer occurrences should be required for it to qualify as duplicated (see
Sect. 4.3.1 for details). To eliminate duplicated phrases, we can introduce and rigor-
ously reuse named variables and definitions.

3.2.2 � Long element

Long element is a legal adaptation of the software engineering code smell long func-
tion. Lawyers smell it when they get lost in the text they are reading or have trouble
discerning those parts of the text that are relevant to them. More formally, a long
element is an element of law containing text that is long as assessed by some abso-
lute or relative measure (e.g., its number of tokens or its quantile in a token length

1 3

Law Smells﻿	

distribution). Long elements are problematic because they may indicate a lack of
structure or abstraction in the legal text, making the law both harder to read and
more complicated to maintain. We can detect long elements using domain-specific
adaptations of outlier detection methods (see Sect. 4.3.2 for details). To eliminate
long elements, we can move some of their text to other (preexisting or newly cre-
ated) elements or rewrite the text itself, e.g., by applying mitigation strategies for
other law smells.

3.2.3 � Ambiguous syntax

Ambiguous syntax is a legal adaptation of the software engineering code smell mys-
terious name, with pinches of repeated switches and speculative generality. Lawyers
smell it, inter alia, when they litigate over the meaning of commas or argue about
whether an or is inclusive or exclusive. More formally, ambiguous syntax is the use
of logical operators (e.g., and, or, and no(t)), control flow operators (e.g., if, else,
and while), or punctuation (e.g., commas and semicolons) in a way that leaves room
for interpretation. Ambiguous syntax is problematic because it creates legal uncer-
tainty, which is often removed through costly lawsuits and sometimes leads lawmak-
ers to adopt mathematically redundant syntax like and/or.7 We can detect instances
of potentially ambiguous or mathematically redundant syntax using pattern match-
ing with regular expressions (see Sect. 4.3.3 for details). To eliminate truly ambigu-
ous instances, logical operators can be used with their mathematical meaning, xor
can be introduced as a shorthand for the exclusive or (reserving or for the cases with
inclusive meaning), and brackets can be added as syntax (e.g., to clarify operator
binding).

3.2.4 � Large reference tree

Large reference tree is a legal adaptation of the software engineering code smell
message chain. Lawyers smell it when they find themselves following many refer-
ences to understand the full meaning of the text they were originally interested in.
More formally, a reference tree rooted at an element of law r is a tuple T

r
= (V

r
,E

r
) ,

where V
r
 is the set of elements of law reachable from r by following references

(including r), and E
r
 is a minimal set of edges (references), which is generally

not unique, such that each element of V
r
 can be reached from r. To illustrate this

definition, a sample reference tree is depicted in Fig 1. A large reference tree is a
reference tree whose edge set exceeds a given size x, which represents the largest
acceptable number of references that we must follow to fully understand the content
of a root element. The simplest case of a large reference tree is a long reference
chain. Large reference trees are problematic because they increase the cognitive load

7  For an example of costly syntactic ambiguity that received plenty of media coverage in 2018, see
O’Connor v. Oakhurst Dairy – 851 F.3d 69 (1st Cir. 2017), where the opinion of the First Circuit starts
with “For want of a comma, we have this case”. In defense of the mathematically redundant and/or, see
Robbins (2017).

	 C. Coupette et al.

1 3

involved in navigating legal texts, and they raise the risk of unintended normative
side effects when elements deep in the tree hierarchy are changed. We can detect
large reference trees using domain-specific adaptations of graph traversal algorithms
(see Sect. 4.3.4 for details). To eliminate large reference trees, we can restructure
the texts and references contained in its elements, and we can make all references as
specific as possible.

3.2.5 � Natural language obsession

Natural language obsession is a legal adaptation of the software engineering code
smell primitive obsession. Lawyers smell it, inter alia, when they are interested in
the law related to a specific named entity (e.g., a committee of the United States
Senate), or when they try to automate their clients’ compliance. More formally, nat-
ural language obsession is the representation of typed data as natural language text,
often without a standardized format. It is problematic because typed data is noto-
riously hard to extract or maintain when represented using (inconsistently format-
ted) natural language. We can detect natural language obsession using Named Entity
Recognition methods (including methods as simple as pattern matching with regular
expressions), potentially augmented or validated by techniques detecting duplicated
phrases (see Sect. 4.3.5 for details). To eliminate natural language obsession, we can
create a data layer that is separate from the text (representation) layer, use strong
types for named entities, and associate type checking, highlighting, and data analysis
rules with the introduced types.

3.3 � Taxonomy

We now abstract and expand the ideas introduced above into a taxonomy of law
smells. To this end, we first derive the necessary distinctions and then give more
details on ten additional smells that we position within the resulting taxonomy. This
taxonomy is not meant to be exhaustive. Rather, our goal is to provide a starting
point for conceptual and empirical validation, discussion, and further refinement.

Fig. 1   Toy elements of law connected by reference edges (left) and a reference tree rooted at element 8
(right), where edges not in E8 are drawn as gray dashed arrows

1 3

Law Smells﻿	

3.3.1 � Distinctions

To develop our taxonomy, we observe some commonalities and differences
between the exemplary law smells introduced in Sect. 3.2.

First, all of the law smells from Sect. 3.2 can be sniffed from the text only (in
programming language parlance: they can be detected at compile time; in legal
theory parlance: they concern law in books), but there might also be law smells
that can only be detected when the law is used (i.e., at runtime, concerning law in
action). Thus, we distinguish static and dynamic law smells.

Second, we find that the duplicated phrase and natural language obsession
smells are strongly related to the content of legal rules, i.e., the data of the law,
while the ambiguous syntax smell is related to how this content is expressed, i.e.,
the grammar of the law, and the long element and large reference tree smells
relate to how the legal content is organized, i.e., the structure of the law. Con-
sequently, we differentiate between data-related, grammar-related, and struc-
ture-related law smells. Note that since grammar-related law smells are gener-
ally static, there is no need for this category in the dynamic setting. Instead, we
require an additional dynamic category, called relevance-related, to gather smells
related to elements of law with limited overall utility (including, but not lim-
ited to, legal cleaning, i.e., identifying and removing elements of law that are no
longer relevant).

Third, while long element (when measured in absolute terms, on which we focus
here), ambiguous syntax, and natural language obsession can often be detected by
looking at a single element of the law, duplicated phrase and large reference tree
(as well as long element when measured in relative terms) mostly require looking
at multiple elements of law together. Therefore, we further distinguish local (i.e.,
locally detectable) and non-local (i.e., locally undetectable) law smells.

Table 2 summarizes the distinctions just introduced, and Figure 2 gives an
overview of the resulting taxonomy. Figure 2 also contains ten new law smells in
addition to those already classified above, thus painting a more complete picture
of the law smell landscape we envisage.

Table 2   Overview of distinctions used in the law smell taxonomy

Distinction Categories Question

Stability Static, dynamic Can it be detected by looking at the text alone?
Modality Data, structure,

grammar, relevance
What aspect of the law does it relate to?

Locality Local, non-local Can it be detected by looking at a single element of law?

	 C. Coupette et al.

1 3

3.3.2 � Details

We now elaborate on the new law smells from Fig. 2. Of these smells, five are static
and five are dynamic, and we discuss them in the order in which they occur in Fig. 2.

Long requirements list, a legal adaptation of the software engineering code
smell long parameter list, is a static law smell describing the situation in which a
stated legal consequence only applies given a large number of preconditions. As
preconditions might have their own preconditions to be resolved recursively, com-
puter scientists may think of the setting as a search tree whose initial branches
need to be expanded until we have either a negative answer on one branch or

Law Smells

static

data-related

Duplicated Phrase

Natural Language Obsession

structure-
related

Long Element
Long Requirements List

Large Reference Tree

Rule Envy

Failed Integration

GRAMMAR -
RELATED

Ambiguous Syntax

Complicated Logic

Inconsistent Enumeration

dynamic

data-related Term Overloading

structure-
related

Divergent Change

Shotgun Surgery

Overbroad Reference

RELEVANCE -
RELATED

Lazy Element

Fig. 2   Depiction of the law smell taxonomy derived in the main text. Smells from Subsection 3.2 are
printed in bold, and primarily non-local smells are typeset in italics. The names of subcategories that dif-
fer across static and dynamic smells are emphasized using small caps

1 3

Law Smells﻿	

positive answers on all branches. The efficient lawyer’s task is to pick, using their
legal intuition and the facts of an individual case, an expansion order that mini-
mizes the number of search nodes to be expanded. This can only work if they
can retain at least the initial preconditions in short-term memory, and therefore,
the cognitive load imposed by these preconditions should not exceed the average
lawyer’s—if not the average lawtaker’s— short-term retention capacity. Although
the precise measurement of short-term memory is still debated in cognitive psy-
chology, for the purposes of flagging long requirements lists, we can still use a
conservative maximum number of requirements x as a heuristic. To shorten long
requirements lists, lawmakers can introduce new concepts bundling requirements
that cooccur frequently.

Rule envy, a legal adaptation of the software engineering code smell feature envy,
describes a setting in which a legal rule is more closely related to rules from other
parts of the law than to the rules with which it is grouped (e.g., the rules in its own
section). Typical warning signs that an element of law is affected by rule envy are
its extensive (implicit or explicit) references to rules from far-away parts of the law,
paired with an absence of (implicit or explicit) references to rules in its immediate
neighborhood. Rule envy is problematic because it goes against the rationale that
underlies the structuring of law into separate elements: improving its comprehensi-
bility and maintainability by grouping related content together. In theory, rule envy
can be mitigated by placing the envious element with the elements it envies. How-
ever, in practice, many elements of law rely on legal rules from different places, and
consequently, it may not always be clear where an element naturally belongs. Fur-
thermore, some prominent drafting techniques such as index sections deliberately
create rule envy, and when used with caution, the gain in navigational efficiency
associated with these techniques may outweigh the drawbacks of the resulting law
smell.

Failed integration can be conceived as the group-level opposite of rule envy: it
refers to a sequence of (mostly lower-level) elements of law that are isolated from
the environment in which they are placed— although their position within the struc-
ture of the law suggests otherwise. As the train of thought spun in the environment
of an affected sequence is interrupted by failed integration, it makes navigating the
law unnecessarily difficult. This smell frequently results, e.g., from hasty or unen-
thusiastic implementation of supranational legal rules into national legal systems
(e.g., when the German legislator needs to implement law mandated by the Euro-
pean Union), especially when supranational and national law differ in their legal
concepts. As a result, affected sequences often differ from their environment in
drafting style and desired interpretation of core terms, which increases, inter alia,
the risk of inconsistent enumeration and term overloading (described below). Failed
integration can be mitigated by either moving the affected sequence completely out
of its environment, i.e., making it into an independent unit of law, or rephrasing its
elements for better coherence with its environment.

Complicated logic arises when legal rules contain nested conditionals, switches,
or loops, often with elaborate heads including negations. It sometimes cooccurs with
long requirements list and frequently results in ambiguous syntax. In legal texts just
as in code, humans have trouble parsing complicated logic because it puts significant

	 C. Coupette et al.

1 3

strain on their mental cache, impairing the usability of the law for both lawmakers
and lawtakers. Lawmakers can follow programmers’ mitigation principles to elimi-
nate complicated logic, e.g., they can decompose or consolidate conditionals where
possible. In extreme cases, e.g., when lawmakers communicate a table in writing
(example: 7 U.S.C. §8732, which details loan rates per unit of crop per crop type
and year), the best choice is to use an entirely different structure to present the con-
tent (in the example: a table).

Inconsistent enumeration refers to the unstandardized usage of enumeration labels
(e.g., large Latin alphabets, small Latin alphabets, Arabic numbers, large Roman
numerals, small Roman numerals, etc.) across nesting levels in legal texts (or, more
mathematically: the lack of a bijection between enumeration labels and nesting lev-
els). As programming languages use the same syntax at all levels to indicate nesting
(e.g., lists are nested simply by using list syntax inside list syntax) or enumeration
(e.g., switch-case expressions in some languages), this law smell has no close coun-
terpart in the software engineering code smell literature. Its repercussions, however,
could be compared to those of overly lenient XML schema definitions: The affected
text becomes hard to parse, be it for humans or machines, because the meaning of an
encountered nesting element can only be resolved within a larger context. Lawmak-
ers can mitigate inconsistent enumeration by (legally) mandating a one-to-one map-
ping between enumeration labels and nesting levels, which is then used consistently
across legal documents and can, consequently, be relied upon by all stakeholders.

Term overloading, a legal mixture of the software engineering code smells myste-
rious name and mutable data, occurs when the same term is used to denote different
concepts in different places, either explicitly (explicit namespacing, e.g., using scop-
ing language such as “For the purposes of this section, … ”) or implicitly (implicit
namespacing, e.g., through jurisprudence). It is classified as a dynamic smell
because divergent meanings of the same term often result from the interpretation of
legal rules in practice, e.g., by courts. Term overloading increases the cost of navi-
gating the law for lawtakers, as the meaning of a term becomes context-dependent,
and the context-applicable meaning becomes accessible only through (often non-
local) further reading (explicit namespacing) or background knowledge (implicit
namespacing). Additionally, it raises maintenance costs for lawmakers, especially
when tasked with applying changes to all instances of a concept labeled by an over-
loaded term. Term overloading can be mitigated by introducing separate labels for
each concept referenced by the overloaded term, and by using strategies similar to
those combating natural language obsession.

Divergent change, a legal adaptation of the eponymous software engineering code
smell, describes a situation in which the same element of law needs to be changed
in different ways for different reasons. For example, an element holding a sequence
of generic legal rules is affected by divergent change if in different application
contexts, different specific exceptions need to be made to rules contained in differ-
ent sequence parts, and the lawmaker’s original strategy is to place the exceptions
with the generic provisions. Divergent change is a dynamic smell because it can be
detected only during maintenance. It indicates that the chosen level of abstraction is
inadequate for the affected legal rules, thus pointing to a problem in the structure of
the law that may also impair its usability (e.g., the affected element of law may lack

1 3

Law Smells﻿	

conceptual clarity or be hard to navigate). Divergent change can be counteracted by
restructuring the code to enforce a clear separation of concerns between applica-
tion contexts, such that the rules that are truly shared between contexts are separated
from the context-specific details.

Shotgun surgery, like the eponymous software engineering code smell, is the
opposite of (the legal adaptation of) divergent change. It captures the setting in
which one high-level change to the law necessitates many small changes to legal
rules in many different parts of the law, and as such, it often indicates natural lan-
guage obsession. Just as divergent change, shotgun surgery is a dynamic smell
because it can only be detected during maintenance. Shotgun surgery is not only
slow but also hard for lawmakers to perform consistently (and painful for lawtakers
to follow). As a result, conducting shotgun surgery may lead to inconsistencies in
the law. This makes future amendments to the law even harder, if not impossible, to
perform correctly, and produces unwarranted legal uncertainty (and litigation costs
associated with removing that uncertainty) for lawtakers confronted with the result-
ing inconsistencies. Where it is due to natural language obsession, shotgun surgery
can be counteracted by the strategies used to neutralize that smell. Otherwise, close
inspection of those parts of the law that are altered by shotgun surgery might yield
characteristics that could be abstracted into new concepts or generalized rules for
smell mitigation.

An overbroad reference is a reference to a structural element of law that is more
general than its use case requires. It is a legal adaptation of the software engineer-
ing code smell speculative generality, which we classify as dynamic because the use
case requirements of a legal rule often become clear only as it is used in practice.
This smell typically manifests in formulations such as “Subject to the provisions of
X [related to Y]”, where X is a large structural element of the law, e.g., a Title, a
Part, or a Chapter of the United States Code, and Y (if present) is some roughly
sketched topic. Overbroad references shift the cost of identifying the relevant ref-
erenced material from lawmakers to lawtakers, decreasing efficiency and legal cer-
tainty and increasing the probability of errors. Lawmakers can eliminate overbroad
references by identifying the applicable legal rules themselves and referencing these
rules as precisely as possible. Their need for using overbroad references to hedge
against future changes could be diminished by using computational tools to track the
dependencies among legal rules.

Lazy element, a legal adaptation of the eponymous software engineering code
smell, refers to elements of law that are hardly relevant in practice. It is a dynamic
smell because both laziness and non-laziness can develop over time: For example, a
legal rule can be relied upon by a lot of other rules when it is first promulgated, but
newer rules can gradually supersede it, or it can be completely isolated at the start
but then form the basis of many lawsuits or contracts. The most extreme case of
lazy elements is dead law: legal rules that are simply not needed (anymore)— e.g.,
because their preconditions imply that a person needs to have witnessed a certain
event that happened x years ago, and x exceeds maximum observed human lifes-
pan. In the absence of systematic compression or cleaning strategies for law (sunset
clauses are still a fringe phenomenon), lazy elements cause bloating, and bloated
law is frustrating to read and maintain. Lawmakers can eliminate lazy elements by

	 C. Coupette et al.

1 3

integrating them with their more industrious peers or, if the elements turn out to
be dead, removing them entirely (through cleanup acts such as the Rechtsbereini-
gungsgesetze in Germany).

4 � Methods: How do we detect law smells?

In this section, we introduce methods to detect the law smells presented in Sect. 3.
After clarifying our assumptions regarding the input we are working with (4.1), we
assemble our law smell detection toolkit (4.2), and then provide more detail on the
tools to detect our example law smells (4.3). There is currently no single method
to reliably detect all or even a majority of the law smells set forth in our taxonomy.
Developing a general approach is an important direction for future work, but it will
require much more work than what can be presented in a single paper. Therefore,
we start by providing a set of techniques suitable for individual law smells, based
on common characteristics of legal texts (language and structure). Many of the tech-
niques we build on are simple by themselves, but intricacies arise when adapting
them to tackle the law smell detection problem. For clarity, we define this problem
as follows.

Definition 2  (Law Smell Detection Problem) Given a set of legal documents with
associated metadata, identify instances of law smells in elements of the set.

Here, set is used in the mathematical sense, and the terms legal document and
associated metadata are deliberately open. For example, the legal documents could
be different versions of all Titles of the United States Code, and metadata could
specify versioning relationships between them. Note that we do not require the doc-
uments to be amendable, but some dynamic law smells can only occur in amendable
documents.

4.1 � Assumptions

Which methods are available for detecting law smells depends heavily on how the
law (used in the following to denote the legal document set of interest) is stored and
accessed. If the law is accessed in printed form, manual detection is the only method
that is immediately applicable, and there are generally no guarantees that manual
detection is performed consistently or documented comprehensively. If the law is
stored in a version-controlled database with rich semantic annotations and a plethora
of systematic indices, automatic detection of law smells can be performed consist-
ently and documented comprehensively by the database administrator using mostly
adaptations of standard software engineering and database management tools. But
while the latter state certainly seems desirable, most use cases for law smell detec-
tion lie between the sketched extremes: Lawmakers and lawtakers access the law in
a semi-structured format, e.g., HTML or XML, with hardly any access to systematic
indices or semantic annotations. Therefore, in the following, we focus on methods

1 3

Law Smells﻿	

to detect law smells automatically or semi-automatically, given access to the law in
a semi-structured format. We also assume that all legal documents provided in this
format contain text, which can be segmented into tokens.

We make additional assumptions regarding the information that can be extracted
from the semi-structured format (e.g., via preprocessing). These assumptions strike
a balance between generality (to ensure that they hold in a large number of juris-
dictions and for a large number of document types) and specificity (to ensure that
they provide useful constraints for solving the law smell detection problem). They
are encapsulated in the legal document model developed by Coupette et al. (2021a),
which builds on ideas introduced by Katz et al. (2020). In brief, this model assumes
that legal documents, in addition to their text, contain at least three types of struc-
ture: hierarchy (elements of law are nested), sequence (most text is placed in ele-
ments that are uniquely labeled and sequentially ordered, and the labels of sequence-
level elements are used as the primary index for text retrieval), and reference (text in
one element can contain cross-references or citations to other elements). For exam-
ple, the United States Code is structured into Titles as the top level of a hierarchy
containing substructures such as Parts, Subparts, Chapters, Subchapters, and Sec-
tions, its sequence is indicated by section labels, and reference occurs to elements on
all levels of the hierarchy. Similar observations apply to many collections of rules,
be it from other branches of government (e.g., the Code of Federal Regulations),
in other countries (e.g., Germany), or on other regulatory levels (e.g., European
Union law). Note that all assumed structure types can be captured by graphs (ide-
ally, directed multigraphs with one edge type per structure type), and that the tree
induced by the hierarchy edges need not be regular or balanced, as illustrated in
Fig. 3. This facilitates the development of our law smell detection toolkit, which we
describe next.

Fig. 3   Structure types typically found in legal documents, illustrated using a toy document X. X consists
of nine sequence-level elements (gray) containing text (e.g., sections), which are connected via sequence
edges (blue). These are nested inside two higher-level structures (A and B, e.g., parts), the first of which
holds two additional mid-level structures (I and II, e.g., chapters), and all elements are connected by a
tree of hierarchy edges (black). Finally, the text in some elements references other elements (not nec-
essarily on the same level), and these references are captured by reference edges (red). Note that the
sequence-level elements can have further substructures (e.g., subsections), which can also reference or be
referenced by other elements

	 C. Coupette et al.

1 3

4.2 � Tools

Since legal documents contain text with structure that can be represented as a graph,
our law smell detection tools naturally fall into two categories: text-based and
graph-based. Text-based tools comprise law-specific adaptations of methods from
natural language processing and sequence mining (where the text is understood as a
sequence of tokens or characters), while graph-based tools encompass law-specific
adaptations of graph algorithms and methods from legal network analysis. Table 3
groups the law smells from our taxonomy (cf. Fig. 2) according to these categories,
placing each smell where the emphasis of our detection strategies lies. For each law
smell in the text category, we list the abstract task(s) associated with its detection,
and for each law smell in the graph category, we list the detection-relevant edge
types (hierarchy, sequence, or reference).

Most of the tools we propose are deliberately designed to be language-agnostic.
This applies naturally to the methods based on graphs (although constructing these
graphs in the first place may require language-specific methods, depending on the
structure of the raw data), and it also extends to many text-based methods. Among
the text-based approaches, identifying duplicated phrase, long element, and natu-
ral language obsession works largely independently of the document language,
whereas detecting complicated logic and ambiguous syntax requires some language-
specific adaptation, just like uncovering their code smells equivalents. Our current

Table 3   Classification of law smells by primary detection method. Dynamic smells are typeset in italics;
their detection may involve consulting external data

Law smell Relevant abstract task(s)

(a) Text-based detection
 Duplicated phrase Pattern detection (Unknown Patterns)
 Natural language obsession Pattern detection (Known/Unknown Patterns)
 Long element Segmentation, Counting
 Long requirements list Pattern detection (Known Patterns), Counting
 Ambiguous syntax Pattern detection (Known Patterns)
 Complicated logic Pattern detection (Known Patterns)
 Term overloading Pattern detection (Known/Unknown Patterns)
 Divergent change Diffing
 Shotgun surgery Diffing

 Law smell Relevant edge type(s)

(b) Graph-based detection
 Large reference tree Hierarchy, Reference
 Rule envy Sequence, Reference
 Failed integration Hierarchy, Sequence, Reference
 Inconsistent enumeration Hierarchy
 Overbroad reference Hierarchy, Reference
 Lazy element Reference

1 3

Law Smells﻿	

approaches here require language-specific Regular Expressions (detailed below),
and therefore, are currently limited to English-language documents. The resulting
expressions are quite simple, however, such that following our rationales and Eng-
lish-language examples, scholars working with other languages should be able to
devise equivalent expressions for these languages with little additional effort.

Among the tasks relevant for text-based detection, segmentation, counting, and
diffing are relatively simple conceptually, but the devil lies in the details. Here, the
primary challenges are choosing adequate inputs and making sensible judgment
calls when translating raw outputs into law smell detection results. For the detection
of known patterns, our Swiss army knives are Regular Expressions (Regex), as they
allow us to incorporate legal background knowledge easily and their results are com-
pletely interpretable. These expressions benefit from domain expertise and careful
revisions, but they can be created and managed by individual researchers or small
research groups, especially in the contexts for which we deploy them. While they
could theoretically be learned in a semi-automated process, appropriately labeled
legislative datasets are currently hardly available, and some human input beyond
labeling would likely remain required, as fully automated tools still struggle to parse
legal documents with very long sentences correctly. For some of the grammar-
related smells (e.g., ambiguous syntax or long requirements list), detection could
further rely on parse trees or other text representations containing syntactic infor-
mation, provided they are deemed sufficiently reliable. Additionally, Named Entity
Recognition (NER) tools could be used whenever the known patterns of interest are
named entities according to their definition.

For the detection of unknown patterns, what methods we can choose from
depends on how we define a pattern: Is a pattern a sequence of tokens that is
repeated in some sense frequently— or is it something different (e.g., a characteristic
sequence of part-of-speech tags)? If the former, is frequency assessed using some
fixed (absolute or relative) threshold ( → frequent pattern mining), is it determined
relative to our expectations under a certain null model ( → statistical pattern mining),
or is it based on whether replacing the pattern with a new symbol aids compres-
sion ( → information-theoretic approaches)? Should we allow a pattern to contain
gaps or mismatches ( → no traditional n-grams), to contain or overlap with other
patterns ( → no greedy assignment approaches), or even to have parameters (e.g.,
P(term, reference) = “{term} has the meaning given such term in {reference}”)?
Our answers to these questions should be guided by the law smell of interest (e.g.,
we might require exact matches for duplicated phrase) and the characteristics of the
documents in which we would like to detect it (e.g., the importance of algorithm
scalability increases with the length of the document at hand). As corpora of appro-
priately annotated documents become available (which they currently unfortunately
are not), some (parts of) answers, such as thresholds for the detection of law smells
like duplicated phrase and long element, could also be determined using supervised
machine learning techniques.

When performing graph-based law smell detection, the biggest challenge lies in
finding an appropriate resolution level at which to represent the edges of interest.
This is a common problem in legal network analysis (cf. Coupette et al. 2021a; Katz
et al. 2020), and its solutions are highly context-dependent. Once the edge resolution

	 C. Coupette et al.

1 3

level has been determined, most graph-based law smell detection methods can be
built from relatively simple primitives, such as walks along edges and set operations
on node neighborhoods. In specific cases, prepackaged graph algorithms might also
be available (e.g., given an intelligently constructed input graph, a graph clustering
algorithm could be used to identify instances of failed integration). Here, we must
take extra care to ensure that all assumptions made by the prepackaged algorithm
(including those that are only implicit) still hold in the scenario of interest.

4.3 � Examples

To show the previous deliberations in action, we now elaborate on our methods to
detect the example law smells from Sect. 3.2. For concreteness, we focus on sets of
legal documents that fulfill the assumptions specified in Sect. 4.1 and contain codi-
fied statutes or codified regulations (e.g., the United States Code, the Code of Fed-
eral Regulations, or consolidated versions of German root laws [Stammgesetze] and
root regulations [Stammverordnungen]). To demonstrate that our methods work well
in practice, we use them to detect law smells in the United States Code in Sect. 5.

4.3.1 � Duplicated phrase

Recall from Sect. 3.2.1 that a duplicated phrase is a phrase above a specified length
(maximum phrase length) that has more than a specified number of occurrences
in a legal text (maximum occurrence frequency), where a phrase is a nonempty
sequence of terms, each of which is either a token or a placeholder for an argument
that is itself a phrase. We classify this smell as static, data-related, and non-local
(cf. Figure 2), with text-based detectability based on discovering unknown patterns
(cf. Sect. 4.2).

With this definition, the number of duplicated phrases in a legal document
depends heavily on how we treat the parameters maximum phrase length and maxi-
mum occurrence frequency. Furthermore, if we choose the parameters to be con-
stant, duplicated phrases become practically downward closed, i.e., any minimum-
length subsequence of a duplicated phrase will also be a duplicated phrase. For naïve
parametrizations, we thus face problems similar to those encountered in frequent
pattern mining (see Aggarwal and Han (2014) for an overview): (1) If we choose the
thresholds too high, we will miss duplicated phrases that we would like to include,
and if we choose them too low, we will catch phrases that we would like to exclude,
(2) there will be lots of redundancy in the result set, and (3) reporting all our results
will overwhelm the users of our method.

Thus, drawing inspiration from pattern set mining (see, e.g., Vreeken et al. 2011),
rather than identifying all duplicated phrases, our goal becomes to identify a set
of duplicated phrases whose refactoring we expect to yield the biggest text qual-
ity improvements. To reach this goal, we use the Dupex algorithm introduced by
Coupette et al. (2021b). Dupex leverages information theory to identify duplicated
phrases in legal documents, selecting sequences of tokens as duplicates based on the
compression we achieve when replacing them (which results in adaptive length and

1 3

Law Smells﻿	

occurrence frequency thresholds). As input to Dupex, we feed a preprocessed ver-
sion of the text we are interested in, with common named entity patterns replaced
by correspondingly labeled placeholders. Hence, some of the duplicated phrases we
discover are naturally parametrized.

4.3.2 � Long element

Recall from Sect. 3.2.2 that a long element is an element containing legal text that
is long as assessed by some absolute or relative measure. We classify this smell as
static, structure-related, and—emphasizing absolute measurement—local (cf. Fig-
ure 2), with text-based detectability based on solving segmentation and counting
tasks (cf. Sect. 4.2).

When detecting long elements, we need to answer three questions:

1.	 Which type of element are we interested in (e.g., do we want to identify long
Titles, Chapters, or Sections in the United States Code)?

2.	 How do we define the length of a single element?
3.	 Given the length of an element (and potentially that of other elements), how do

we decide whether it is long?

The answer to the first question depends on the context in which the method is
deployed, e.g., the highest level at which a lawmaker using the method can amend
legal rules. Therefore, we propose a generic long element detection method that
works for all element types, provided that for each element of a given type, we have
access to the text nested inside it (i.e., its own text and the text contained in its hier-
archical descendants).

To answer the second question, we define the length of an element to be the num-
ber of tokens contained in its text. Notable alternatives to this definition of length
are the number of non-whitespace characters, the overall number of characters, or
(unless we are dealing with leaves in the element hierarchy) the number of children
or descendants of an element.

In answering the third question, we propose two complementary views. First,
since legal texts are typically accessed at their sequence level (e.g., the section level
in the United States Code), for sequence-level element types, an absolute length
measure based on readability seems appropriate, and we suggest to flag all elements
of these types as long if they exceed the length of a typical page (i.e., 500 tokens).
Second, for elements of all types, we can additionally adopt a relative length meas-
ure based on the length distribution of all elements of the same type that share a
common ancestor of a specified other type in the element hierarchy (cf. Figure 3—
e.g., all Sections in the same Title of the United States Code). Here, our approach is
to flag an element as long if it is longer than a user-chosen number of tokens. This
number can be chosen as an absolute threshold based on semantic considerations
(e.g., by converting a number of pages to a number of tokens), as a relative threshold
based on the complementary cumulative distribution function (CCDF) of the rel-
evant token length distribution, which reveals what percentage of elements (y-axis)

	 C. Coupette et al.

1 3

are longer than a certain number of tokens (x-axis), or as a function (e.g., the maxi-
mum) of both.

4.3.3 � Ambiguous syntax

Recall from Sect. 3.2.3 that ambiguous syntax is the use of logical operators, control
flow operators, or punctuation in a way that leaves room for interpretation. We clas-
sify this smell as static, grammar-related, and local (cf. Figure 2), with text-based
detectability based on discovering known patterns (cf. Sect. 4.2).

Since the known patterns we are looking for are characterized by syntactic ambi-
guity, syntactic parsers can be helpful only in the sense that parse tree ambiguity
suggests ambiguous syntax. Instead, we therefore resort to Regex. These Regex are
designed to capture formulations that are likely to create syntactic ambiguity, using
operators, punctuation, and wild cards as building blocks.

Our Regex allow us to flag problematic sequences of tokens— e.g., sequences
featuring and and or in close proximity, or contextualized usages of mathemati-
cally redundant syntax like and/or—, which can then be judged quickly by human
experts.

4.3.4 � Large reference tree

Recall from Sect. 3.2.4 that a large reference tree is a reference tree whose edge
set exceeds a given size x, where a reference tree rooted at an element of law r is a
tuple composed of the elements V

r
 reachable from r by following references (includ-

ing r), and a minimal set of reference edges E
r
 such that each element of V

r
 can

be reached from r. We classify this smell as static, structure-related, and non-local
(cf. Figure 2), with graph-based detectability based on hierarchy edges and reference
edges (cf. Sect. 4.2).

To detect large reference trees, we use the representation of legal documents as
directed multigraphs from Coupette et al. (2021a), resolving all hierarchy edges and
reference edges at the lowest possible level. From the resulting directed multigraphs,
we remove those nodes (and their incident edges) that contain more than a speci-
fied number of tokens. This effectively excludes reference trees that are unlikely to
be constructed in practice (e.g., when a Section references a Chapter of the United
States Code, lawtakers are unlikely to read through the entire Chapter to understand
the referencing Section). We replace each reference edge to a non-leaf node with
edges to all of its descendants that directly wrap text, and construct trees rooted at
all elements of law which contain references. This allows us to assess the minimum
number of references a lawtaker must follow in order to fully resolve the content of
the provision at its root (i.e., n − 1 references if the tree has n nodes), provided they
do not encounter any semantic stopping criteria along the way.

A long reference chain is any path from the root of a reference tree to a leaf
at depth � , where � > x for a user-specified maximum acceptable chain length x.
x might lie around 3 if chosen in accordance with common (but not uncontested)
user interface design heuristics, or around 6 if we trust users of law to be twice as
patient as regular users. The length of reference chains depends on the reference

1 3

Law Smells﻿	

resolution strategy (e.g., if it is more like breadth-first search or depth-first search),
regarding which we deliberately refrain from assumptions. We can, however, learn
about the best possible worst case by analyzing reference chains in shortest path
trees.

4.3.5 � Natural language obsession

Recall from Sect. 3.2.5 that natural language obsession is the representation of
typed data as natural language text. We classify this smell as static, data-related,
and local (cf. Figure 2), with text-based detectability based on discovering known or
unknown patterns (cf. Sect. 4.2).

Observe that, due to how we define a phrase in Sect. 4.3.1, natural language obses-
sion leads to duplicated phrases. However, this only holds, at least in part, because
we preprocess the input text for duplicated phrase detection to replace named enti-
ties with known patterns. Therefore, the detection of natural language obsession and
the detection of duplicated phrases can be viewed as mutually enhancing: We can
preprocess the input text for duplicated phrase detection using tools to detect natural
language obsession via known patterns, and use the results from duplicated phrase
detection to detect instances of natural language obsession involving unknown pat-
terns. Here, the classification of patterns as known versus unknown can refer to not
only to us as the method designers but also to the users of our methods, who might
want to integrate their background knowledge into the law smell detection process.

It is worth noting that, although NER tools seem to be made for the task of
detecting instances of natural language obsession using known patterns, they usually
require preprocessing steps that do not work reliably on legal texts (e.g., sentence
splitting or part-of-speech tagging), or their decisions are intransparent (e.g., when
they are based on pretrained neural networks). Thus, Regex incorporating domain
expertise, along with lists of known legal entities, are again our tool of choice for
the discovery of known patterns. By running duplicated phrase detection and natu-
ral language obsession detection in alternation, and treating past false negatives and
false positives as future tests, we can then reveal unknown patterns, and iteratively
improve or complete our Regex and named entity lists.

5 � Practice: What law smells exist in the wild?

In this section, we demonstrate the utility of the methods laid out in Sect. 4 to detect
the law smells described in Sect. 3. We focus on identifying the example smells
from Sect. 3.2 with the methods described in Sect. 4.3, using the United States Code
at the end of each year between 1998 and 2019 (inclusive) as an example. Our input
data is taken from Coupette et al. (2021a), who transform the XML files provided by
the Office of the Law Revision Counsel of the United States House of Representa-
tives for the annual versions of each Title of the United States Code into files follow-
ing the data model sketched in Sect. 4.1 (for details on the data preprocessing, see
the Supplementary Material of Coupette et al. 2021a).

	 C. Coupette et al.

1 3

5.1 � Duplicated phrase

As sketched in Sect. 4.3.1, to detect duplicated phrases, we leverage the Dupex algo-
rithm introduced by Coupette et al. (2021b). We run this algorithm on each Title in
each year separately, using the same data preprocessing and parametrization as the
authors (i.e., we replace selected named entities identified by Regex with placehold-
ers and set the maximum number of failures until the algorithm stops to 10 000 ). To
facilitate the analysis of our results, we draw on the postprocessing suggested in the
Dupex paper (i.e., we hierarchically cluster the term vectors of long and frequent
duplicated phrases by their cosine similarity with Ward linkage and use the resulting
phrase ordering for our manual inspection).

Table 4 gives examples of duplicated phrases discovered in the United States
Code in 2019, focusing on duplicates occurring across multiple Titles (top) as well
as duplicates specific to Title 6 (bottom). The general duplicated phrases we iden-
tify often contain language related to scoping and definitions (e.g., “the term {term}
means”) or boilerplate conferring varying degrees of authority or discretion (e.g.,
“as may be necessary to carry out the”), whereas Title-specific duplicated phrases
frequently contain named entities not replaced during preprocessing (e.g., “[[direc-
tor] of the] bureau of citizenship and immigration services”) or topic-related boiler-
plate (e.g., “natural disasters, acts of terrorism, (and|or) other man-made disasters”).

While some of the variation we observe is entirely grammatical (e.g., “there
(are|is) authorized to be appropriated”) or semantically inconsequential (e.g., “for

Table 4   Examples of duplicated phrases identified in multiple Titles of the United States Code in 2019
(top) and in the 2019 version of Title 6—Domestic Security only (bottom), with options and alternatives
written in Regex syntax. For the general phrases, we additionally report the absolute and relative maxi-
mum occurrence frequency, abs

max
 and rel

max
 , of each listed phrase across all Titles, along with the Title

T in which it occurs. For the specific phrases, we instead report the minimum and maximum occurrence
frequency of all options or alternatives, c

min
 and c

max

General abs
max

(T) , rel
max

(T)

for [the] purposes of this (chapter|subchapter|section|subsection|paragraph) 4 280 (26) , 2.90 (26)
[except] as (defined|provided) (by|in) {reference} 706 (42), 0.55 (11)
there (are|is) authorized to be appropriated 1 009 (42) , 0.55 (34)
as may be necessary to carry out the 133 (16), 0.10 (2)
the term {term} means 4 438 (42) , 2.38 (26)

 Specific c
min

 , c
max

[[director] of the] bureau of citizenship and immigration services 18, 66
natural disasters , acts of terrorism , (and|or) other man - made disasters 11, 52
the committee on homeland security (and governmental affairs of the senate|of the

house of representatives)
30, 31

cyber threat indicators (and|or) defensive measures 20, 26
information within the scope of the information sharing environment , including

homeland security information , terrorism information , and weapons of mass
destruction information

26

1 3

Law Smells﻿	

[the] purposes of this…”), other variation could be semantically meaningful (e.g.,
“and|or” variation, as seen in “cyber threat indicators (and|or) defensive measures”),
raising the question whether all nuances in meaning are indeed intended. Moreover,
many of the legibility and maintainability challenges created by duplicated phrases
could be easily mitigated through straightforward refactorings. For example, the last
duplicated phrase from Table 4 could be eliminated in three steps:

1.	 Introduce ISE as an abbreviation for Information Sharing Environment.
2.	 Define the term ISE information as information within the scope of the informa-

tion sharing environment, including homeland security information, terrorism
information, and weapons of mass destruction information.

3.	 Use the newly introduced term to replace all occurrences of its definition.

Dupex extracts duplicated phrases by exploiting redundancies to compress the
input text. Hence, we can use the compression it achieves to measure the redundancy
in this text. This allows us to track the development of redundancy—i.e., an upper

Fig. 4   Evolution of the compression achieved by the Dupex algorithm for different Titles of the United
States Code (1998–2019), in percent of the original encoded bit length. The left panel shows only Titles
with a range of compression values of at least 2% . The right panel shows the remaining Titles, colorizing
those that constantly have a comparatively high compression (more than 25% ) or a comparatively low
compression (less than 15%)

Fig. 5   Zoomable icicle plot enabling visual element length assessment at different hierarchical levels of
the 2019 United States Code: Titles (top), Chapters (middle), and Sections (bottom). Here, we zoom in
on Chapters from Title 15 (Commerce and Trade) and Sections from 15 U.S.C. Ch. 14A (Aid to Small
Business)

	 C. Coupette et al.

1 3

Table 5   The ten longest Sections of the United States Code in 2019 (measured in tokens), along with the
verbosity category of their content

Section Heading Length (K) Category

42 U.S.C. § 1395ww Payments to hospitals for inpatient hospital services 50.3 Inline math
16 U.S.C. § 1274 Component rivers and adjacent lands 35.4 Listing
42 U.S.C. § 1396a State plans for medical assistance 34.6 Substructure
42 U.S.C. § 1395w-4 Payment for physicians’ services 34.5 Inline math
42 U.S.C. § 1395l Payment of benefits 29.0 Inline math
15 U.S.C. § 636 Additional powers 28.1 Substructure
42 U.S.C. § 1395x Definitions 27.7 Listing
42 U.S.C. § 1395m Special payment rules for particular items and services 25.9 Inline math
42 U.S.C. § 1396b Payment to States 24.9 Substructure

 8 U.S.C. § 1182 Inadmissible aliens 23.6 Listing

bound on the deduplication potential— in the Titles of the United States Code over
time. As shown in the right panel of Fig. 4, the deduplication potential of most Titles
ranges between 15% and 25% , with Title 9—Arbitration (low deduplication poten-
tial) and Title 26—Internal Revenue Code (high deduplication potential) as notable
exceptions. However, the left panel of Fig. 4 highlights that the highest deduplica-
tion potential lies in Title 36—Patriotic and National Observances, although this is
one of the few Titles whose deduplication potential has decreased over time. In the
left panel, we also see that the Title with the by far largest range of deduplication
potentials is Title 6—Domestic Security, whose deduplication potential rises dramat-
ically from 2005 to 2007. This increase follows the addition of Chapters 2 and 3 (in
2006) and of Chapters 4 and 5 (in 2007), which demonstrates how duplicated phrase
detection can help pinpoint potentially problematic legislative acts.

5.2 � Long element

As discussed in Sect. 4.3.2, many judgment calls need to be made to define what
constitutes long elements in legal documents. Eager to avoid making these calls
blindly, we propose zoomable icicle plots to interactively explore the element length
distribution of hierarchically structured legal documents. Figure 5 depicts a static
version of such a graphic, showing the Titles of the United States Code in 2019 at
the top, then zooming in on Title 15—Commerce and Trade and its Chapters, and
finally focusing on Chapter 14A—Aid to Small Business and its Sections. As all
horizontal space on layer x (the higher layer) is reclaimed on layer x + 1 by the sub-
structures of the selected element, the element length distribution remains clearly
discernible even on lower layers. Thus, zoomable icicle plots allow us to intuitively
identify long elements as candidates for refactoring, and to set length thresholds
based on the lengths of these elements.

For a quantitative assessment, we focus on Sections in the United States Code,
whose length we measure in tokens, and use a length ranking, rather than a length

1 3

Law Smells﻿	

threshold, to explore our results. Consequently, we list the ten longest Sections,
along with their headings and lengths, in Table 5, and observe that the longest Sec-
tion, 42 U.S.C. §1395ww, occupies roughly one hundred pages in standard print. We
further label the long Sections in Table 5 with their verbosity category (i.e., the pri-
mary reason for their lengthiness, as apparent from manual inspection): inline math
(i.e., verbal representations of computations and their parametrizations), listing (i.e.,
verbal representations of tables, indices, or other enumerations), or substructure
(i.e., sections with elaborate substructure containing related rules).

Identifying the verbosity category of a long element can help us find applicable
refactorings. For example, inline math could be outsourced to authoritative code that
both documents and implements the mandated computation, listings could be out-
sourced to authoritative appendices and reformatted to better bring out their intrin-
sic structure, and elements with substructure could be reshaped into a sequence of
shorter elements. Therefore, deriving a full, potentially more fine-grained taxonomy
of verbosity categories constitutes an attractive avenue for further research.

5.3 � Ambiguous syntax

As described in Sect. 4.3.3, we flag candidate instances of ambiguous syntax using
Regex, leaving the final verdict regarding their ambiguity to a human reader (at
least for the time being). Here, we focus on three triples of problematic patterns
that revolve around the operators and and or. Using “ … ” as a placeholder to denote
at most fifty characters, the first triple of patterns concerns multiple instances of
and or or occurring together (and…and, or…or, and…or|or…and), the second triple
involves the use of these operators with negation (no…(and|or), not…(and|or), not-
withstanding…(and|or)), and the third triple combines them with oppositional con-
junctions ((and|or)…but not, (and|or)…except, (and|or)…unless). When tracking the
absolute and relative prevalence of these patterns in the United States Code over
time, as depicted in Figs. 6 and 7, we observe a substantial and growing number
of ambiguous syntax candidates, whose frequency remains relatively constant over
time— despite personnel changes and technological advances.

Fig. 6   Number of occurrences of ambiguous syntax candidates identified by problematic patterns in the
United States Code (1998–2019)

	 C. Coupette et al.

1 3

We suspect that the set of ambiguous syntax candidates we generate using the
Regex representing our problematic patterns is over-inclusive: For example, when
we find and and or in close proximity, the operator binding is often clarified by the
context. To estimate the degree of over-inclusiveness in our candidate set, we ran-
domly sample 100 candidates flagged by the and…or pattern. In 38 sampled cases,
the operator binding is unclear from a grammatical point of view, i.e., deciphering
the meaning of the affected phrase requires nontrivial background knowledge. This
demonstrates that instances of ambiguous syntax can be identified in a computer-
aided process, although more work needs to be done to exclude false positives (e.g.,
by refining our Regex or filtering flagged candidates).

To give a concrete example, one of our randomly sampled candidates is the sec-
ond sentence of 12 U.S.C. §5538(a)(1)—Mortgage loans; rulemaking procedures;
enforcement (emphasis added):

Such rulemaking shall relate to unfair or deceptive acts or practices regard-
ing mortgage loans, which may include unfair or deceptive acts or practices
involving loan modification and foreclosure rescue services.

The desired operator binding is probably:

Such rulemaking shall relate to (unfair or deceptive) (acts or practices) regard-
ing mortgage loans, which may include (unfair or deceptive) (acts or prac-
tices) involving (loan modification and foreclosure rescue services).

Here, we performed the simplest possible refactoring for instances of ambiguous
syntax: adding brackets. Without brackets, alternative readings of our sample sen-
tence are possible— and the sentence is also much harder to read.

5.4 � Large reference tree

As delineated in Sect. 4.3.4, we detect large reference trees in legal documents on
the basis of their directed multigraph representation as introduced by Coupette
et al. (2021a), excluding overly broad references by removing all nodes that con-
tain more than a specified number of tokens. For our exploratory purposes, we

Fig. 7   Number of occurrences per 1 000 tokens of ambiguous syntax candidates identified by problematic
patterns in the United States Code (1998–2019)

1 3

Law Smells﻿	

set this number to 1 000 tokens, i.e., roughly the amount of content that can be
consumed on a large monitor without scrolling, but other choices may be reason-
able depending on the context. We compute reference trees for all Sections of the
United States Code from 1998 to 2019. In Fig. 8, we depict the distribution of
reference tree sizes (i.e., their number of edges) across the different Titles in 1998
and 2019 as two-dimensional density histograms, where we include edges leading
to nodes that have already been visited (i.e., edges closing cycles in the underly-
ing undirected graph), following the intuition that lawtakers might not keep track
of this information. These histograms not only show that Sections with relatively
large reference trees exist in practice; when overlaid as in Fig. 8, they also reveal
a shift towards larger reference trees in most Titles from 1998 to 2019, especially
in the tail of the size distribution. This extends prior findings that the law is grow-
ing increasingly interconnected (Katz et al. 2020; Coupette et al. 2021a): Even
if we exclude overly broad references, thus modeling that they are unlikely to
be resolved completely, understanding a Section of the United States Code in its
context appears to become more laborious over time.

The reference tree of a Section r in the United States Code can be measured in
many dimensions: Apart from its size (i.e., its number of edges |E

r
| ), we can assess,

e.g., its path lengths—including, most notably, its depth (i.e., the maximum length of
a path from r to any other node in its reference tree)—, its weight (i.e., its total vol-
ume of text), and its diversity (e.g., number of distinct Sections or Titles from which
it contains nodes). As large reference trees are hard to depict statically, and deep or
heavy reference trees are often also large, for concreteness, we show a particularly
diverse reference tree in Fig. 9. Here, we resolve the first two layers of (United States

Fig. 8   Distribution of reference tree sizes across Sections of the United States Code in 1998 and in 2019.
The two-dimensional histograms depict the density of Sections across Titles (x-axis) and reference tree
sizes (y-axis)

Fig. 9   The first two layers of the reference tree of 50 U.S.C. § 82 in 2019. Nodes are labeled with
“{Title} | {Section[Subsection]}”, and node colors correspond to Titles

	 C. Coupette et al.

1 3

Code-internal) references from 50 U.S.C. § 82—Procurement of ships and material
during war, which takes us through seven different Titles in total (Title 50 included).

In the reference tree of 50 U.S.C. § 82, all references from the root to the first
layer are found in Subsection (d)—Compensation for commandeered material. This
Subsection—a single sentence of more than 130 tokens—not only exhibits a mixture
of particularly unsavory law smells, but it also addresses parties seeking compensa-
tion from the United States (i.e., the legislator), sending them to two Sections in
Title 28 for details on what they can demand. To understand these details, poten-
tial claimants need to visit yet another five Titles on the second layer of the refer-
ence tree (in the worst case). Our statistics show that this example is by no means
exceptional, which raises questions about the organization of the United States Code
into Titles and the resulting user experience. As refactoring reference trees is nearly
impossible without dedicated computational tools (due to the many interdependen-
cies we need to account for), the conceptualization and implementation of such tools
is an important field for future work.

5.5 � Natural language obsession

As explained in Sect. 4.3.5, natural language obsession is closely related to dupli-
cated phrases. First, we may use Regex as part of a preprocessing step to extract
and replace instances of natural language obsession following known patterns,
which enables us to discover parametrized duplicated phrases (as demonstrated in
Sect. 5.1). Second, we can leverage the results of duplicated phrase detection to
identify instances of natural language obsession following unknown patterns.

Starting with the Regex-based approach, we extract text corresponding to
data of the types money (e.g., $1,000), percentage (e.g., 50 percent), time period
(e.g., 30 days), and time point (e.g., January 1) for each Title of the United States
Code from 1998 to 2019. Above all, our statistics confirm that data as text is
ubiquitous in the United States Code: In 2019, for example, we identify roughly
19 K amounts of money, 17 K percentages, 35 K time periods, and 44 K time

Fig. 10   Relative prevalence (instances per 1 000 tokens) of natural language obsession concerning data
of the types money, percentage, time period, and time point, for each Title in the United States Code in
1998 and 2019. The maximum of the colormap is computed using the ninety-ninth percentile (rather than
the most extreme value); white fields signal that the corresponding Title has no tokens in the given year
(Titles 6 and 34 had been repealed and not repurposed in 1998, and Titles 51, 52, and 53 did not even
exist)

1 3

Law Smells﻿	

points. However, these statistics come with three caveats: First, our Regex are
deliberately both simple and conservative, i.e., all numbers should be treated as
lower bounds. Second, the categories time period and time point group several
time-related Regex, and the distinction between the classes is not always clearcut.
Third, when comparing annual counts across years, with or without normaliza-
tion by annual Title size, we can only observe changes but not explain them.

Figure 10 depicts how many instances of the data types described above we
detect per 1 000 tokens in each Title of the United States Code in 1998 and 2019.
With due caution, we make the following observations. First, some Titles have
distinct data profiles, e.g., Title 24—Hospitals and Asylums is unique in its com-
paratively high reliance on time periods and time points. Similarly, individual
data types are particularly prevalent in a small set of Titles, e.g., in 2019, Title
13—Census, Title 37—Pay and Allowances of the Uniformed Services, and Title
52—Voting and Elections have the highest frequency of money mentions. Finally,
the relative prevalence of certain data types increases between 1998 and 2019 for
some Titles, while it decreases for others. For example, Title 2—The Congress

Fig. 11   Committee profiles for the Titles of the United States Code in 2019. We depict the number of
times per 1 000 tokens that a Committee is mentioned with a name of the shape “Committee on {topic}
of the {parent body}” in the duplicated phrases we extract for a Title, where the maximum of the color-
map is again computed using the ninety-ninth percentile. The data are hierarchically clustered using cor-
relation as a distance metric and average linkage. We omit Committees not contained with a name of
the above-stated shape in a duplicated phrase for any Title, and Titles in which we do not identify any
Committee in a duplicated phrase. Committee names are abbreviated by the first letter of their parent
body (Senate or House of Representatives) and their topic, and Committees that do not exist anymore are
typeset in italics 

	 C. Coupette et al.

1 3

states relatively more on time points in 2019 than in 1998, whereas Title 25—
Indians does the opposite.

Further illustrating the interplay between natural language obsession and dupli-
cated phrases, we now turn to the instances of the former revealed by detecting the
latter. We focus on two related types of named entities: Committees of the United
States Senate and Committees of the United States House of Representatives. Fig-
ure 11 shows Committee profiles, i.e., frequency estimates of Committee mentions
per 1 000 tokens, for those Titles in the 2019 United States Code in which we find
at least one Committee mention of the shape “Committee on {topic} of the {parent
body}” as part of a duplicated phrase. The statistics underlying Fig. 11 are again
lower bounds on the actual frequencies, as we only count Committee occurrences
when they are specified in the format stated above and part of at least one duplicated
phrase. Hierarchically clustering the data using correlation distance and average
linkage, we observe that in most cases, Senate and House Committees with simi-
lar topics are grouped together. The clustering also brings out similarities between
Titles. For example, Title 16—Conservation, Title 43—Public Lands, Title 48—Ter-
ritories and Insular Possessions, and Title 54—National Park Service and Related
Programs form a group (on the right) that has very low “Committee correlation dis-
tance”, chiefly due to their frequent mentions of the Committee on Energy and Natu-
ral Resources of the Senate and the Committee on Natural Resources of the House of
Representatives.

We find that almost all Standing Committees of the 116th Congress (active in
2019) are part of at least one duplicated phrase, the most notable exceptions being
the Budget Committees of the Senate and the House of Representatives (which are
mentioned only in Title 2—The Congress, often together, and mostly in abbreviated
forms). Furthermore, not all of the “Committees” listed in Fig. 11 existed in the
116th Congress. For example, the Committee on Resources of the House of Repre-
sentatives, which we find in the duplicated phrases of Title 43, has been the Com-
mittee on Natural Resources since 2007 (returning to the name it had been carrying
from 1993 to 1995). Committee fossils like this are widespread, especially among
the House Committees, and we typeset them in Italics in Fig. 11. They allow us to
conclude with a textbook example highlighting the perils of natural language obses-
sion: In the 2019 version of Title 5, both Committee on Governmental Affairs of the
Senate and Committee on Homeland Security and Governmental Affairs of the Sen-
ate are among our duplicated phrases, each with ten mentions.8 All of these men-
tions reference the same entity, i.e., what was known under the name Committee on
Government Operations from 1952 to 1977, reorganized as the Committee on Gov-
ernmental Affairs in 1977, and renamed as the Committee on Homeland Security
and Governmental Affairs in 2005. Upon closer inspection, we find additional men-
tions of the Committee on Governmental Affairs of the Senate, in several name vari-
ants, also in other Titles of the 2019 United States Code (most notably in Title 31,
cf. Fig. 11). As these are references to an entity that was renamed roughly fifteen

8  Note that these duplicated phrase counts do not necessarily correspond to the raw counts of the rel-
evant phrase in the document of interest, as the Dupex algorithm computes a cover of the input token
sequence, i.e., enforces that patterns are non-overlapping.

1 3

Law Smells﻿	

years ago, this state is dissatisfying. While one might argue that the problem could
be (and commonly is) addressed in practice by the Committee Name History pro-
vided by Congress9 and proper interpretation, this solution is neither efficient nor
user-friendly. Here, computational approaches provide a viable alternative: Once a
Committee is represented as an entity, rather than a mere string, changing its name
in all Titles of the United States Code becomes as simple as “refactor...rename”.

6 � Discussion

In Sect. 5, we have shown that the law smells described in Sect. 3 can be detected
by the methods developed in Sect. 4—at least in the United States Code from 1998
to 2019. While we have focused on our five example law smells, i.e., duplicated
phrases, long elements, large reference trees, ambiguous syntax, and natural lan-
guage obsession, it would be interesting to explore the prevalence of other law
smells from our taxonomy in this particular corpus. Moreover, our concepts and
methods could immediately be applied to other corpora of statutes or regulations
across countries, time periods, and regulatory levels, such as the United States Code
of Federal Regulations or the collection of European Union Regulations and Direc-
tives. Leveraging law smells to monitor other collections of legal documents, e.g.,
judicial decisions or contracts, is less straightforward but also deserves further study.

Beyond its practical extensions, our work also leaves room for theoretical and
methodological improvements. While our law smell taxonomy attempts to be com-
prehensive, it is most likely neither exhaustive nor ideally structured, and other
smells and distinctions might prove useful in the future. Likewise, our methodologi-
cal toolkit is functional but by no means perfect. For example, our Regex could eas-
ily integrate more background knowledge and cover more edge to reduce the number
of false law smell negatives. Furthermore, we currently provide no interactive inter-
faces to investigate law smell detection results.

Finally, our work calls for extensions in three directions. First, we focus on law
smell detection, but our ultimate goal is law smell deodorization. To this end, we
need both a better understanding of the landscape of legal refactorings and better
tools to perform those refactorings identified as applicable— in the best case, legal
integrated development environments combined with legal version control. Second,
in many jurisdictions, there is currently no way for the legislator to change the lan-
guage or structure of the law creating interpretive uncertainty concerning its con-
tent— i.e., refactoring in the classical software engineering sense is hardly possi-
ble and potentially undesirable, and researchers could help legislators change this
situation. Third, we have deliberately skirted the questions how and to which extent
law can be made computable, which we consider an important research direction
that could also build on some of our results. Quests to answer this question might
eventually lead us to adapt principles and ideas from object-oriented programming
to the legal domain, which would yield many new law smells and corresponding
refactorings.

9  https://​www.​congr​ess.​gov/​help/​commi​ttee-​name-​histo​ry.

https://www.congress.gov/help/committee-name-history

	 C. Coupette et al.

1 3

7 � Conclusion

We have initiated the systematic study of law smells, i.e., patterns in legal texts that
might impair the comprehensibility and maintainability of the law and indicate the
need for legal refactoring. Guided by five illustrative examples, we have developed
a comprehensive law smell taxonomy, introduced a methodological toolkit for law
smell detection, and confirmed the utility of this toolkit in practice by applying it
to 22 years of codified statutory legislation in the United States Code (1998–2019).
Our work demonstrates how ideas from software engineering can be ported to the
legal domain, and it creates numerous opportunities for further research on defin-
ing, detecting, and deodorizing law smells in all types of legal texts. Thus, we hope
to have contributed a building block for the road towards truly computational legal
drafting.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10506-​022-​09315-w.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Data availibility  The data used in this study is archived under the https://​doi.​org/​10.​5281/​zenodo.​64681​
91.

Code availability  The code used in this study is archived under the https://​doi.​org/​10.​5281/​zenodo.​64681​
93. It is maintained in the following repository: https://​github.​com/​quant​law/​law-​smells.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Aggarwal CC, Han J (2014) Frequent pattern mining. Springer, Berlin. https://​doi.​org/​10.​1007/​
978-3-​319-​07821-2

Allen LE (1957) Symbolic logic: a razor-edged rool for drafting and interpreting legal documents. Yale
Law J 66(6):833–879. https://​doi.​org/​10.​2307/​794073

Allen LE, Engholm CR (1980) The need for clear structure in plain language legal drafting. Univ Mich J
Law Ref 13:455–513

Allen LE, Saxon CS (1995) Better language, better thought, better communication: the a-hohfeld lan-
guage for legal analysis. In: Proceedings of the international conference on artificial intelligence and
law (ICAIL), pp 219–228

https://doi.org/10.1007/s10506-022-09315-w
https://doi.org/10.1007/s10506-022-09315-w
https://doi.org/10.5281/zenodo.6468191
https://doi.org/10.5281/zenodo.6468191
https://doi.org/10.5281/zenodo.6468193
https://doi.org/10.5281/zenodo.6468193
https://github.com/quantlaw/law-smells
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-319-07821-2
https://doi.org/10.1007/978-3-319-07821-2
https://doi.org/10.2307/794073

1 3

Law Smells﻿	

Alschner W, D’Alimonte D, Giuga GC, Gadbois S (2020) Plain language assessment of statutes. In:
Proceedings of the conference on legal knowledge and information systems (JURIX), pp 207–210.
https://​doi.​org/​10.​3233/​FAIA2​00865

Becker P, Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refactoring: improving the design of
existing code. Addison-Wesley Professional, Boston

Bing J (1988) Computerized legal information services: an introduction. Nordic J Int Law 57(4):393–
404. https://​doi.​org/​10.​1163/​15718​1088x​00416

Bing J (2010) Let there be LITE: a brief history of legal information retrieval. European J Law Technol
1(1)

Butt P (2013) Modern legal drafting: a guide to using clearer language. Cambridge University Press,
Cambridge

Coupette C, Beckedorf J, Hartung D, Bommarito M, Katz DM (2021) Measuring law over time: a net-
work analytical framework with an application to statutes and regulations in the United States and
Germany. Front Phys 9:269:1-269:31. https://​doi.​org/​10.​3389/​fphy.​2021.​658463

Coupette C, Singh J, Spamann H (2021b) Simplify your law: using information theory to deduplicate
legal documents. In: Proceedings of the IEEE International Conference on Data Mining Workshops
(ICDMW 2021), pp 631–638

Curtotti M, McCreath E, Bruce T, Frug S, Weibel W, Ceynowa N (2015) Machine learning for readability
of legislative sentences. In: Proceedings of the international conference on artificial intelligence and
law (ICAIL), pp 53–62. https://​doi.​org/​10.​1145/​27460​90.​27460​95

Dorsey TA (2014) The impact of information technology on drafting offices. Int J Legisl Draft Law
Reform 2(1):86–102

Fowler M (2018) Refactoring: improving the design of existing code. Addison-Wesley Professional,
Boston

Fungwacharakorn W, Tsushima K, Satoh K (2021) Resolving counterintuitive consequences in law using
legal debugging. Artif Intell Law 29(4):541–557. https://​doi.​org/​10.​1007/​s10506-​021-​09283-7

Hafner CD, Lauritsen M (2007) Extending the power of automated legal drafting technology. In: Pro-
ceedings of the conference on legal knowledge and information systems (JURIX), pp 59–68. https://​
doi.​org/​10.​5555/​15656​10.​15656​21

Hart HLA (1961) The concept of law, oxford University Press. oxford university press, Oxford
Karpen U (2008) Instructions for law drafting. European J Law Reform 10:163–181
Katz DM, Coupette C, Beckedorf J, Hartung D (2020) Complex societies and the growth of the law. Sci

Rep 10(1):1–14. https://​doi.​org/​10.​1038/​s41598-​020-​73623-x
Li T, Balke T, De Vos M, Padget J, Satoh K (2013) A model-based approach to the automatic revision of

secondary legislation. In: Proceedings of the international conference on artificial intelligence and
law (ICAIL), pp 202–206. https://​doi.​org/​10.​1145/​25146​01.​25146​27

Li WPL, Azar P, Larochelle D, Hill P, Lo AW (2015) Law is code: a software engineering approach to
analyzing the United States code. J Bus Technol Law 10(2):297–374

Liebwald D (2015) On transparent law, good legislation and accessibility to legal information: towards
an integrated legal information system. Artifi Intell Law 23(3):301–314. https://​doi.​org/​10.​1007/​
s10506-​015-​9172-z

Lima A, Rossi L, Musolesi M (2014) Coding together at scale: Github as a collaborative social network.
In: Proceedings of the international conference on weblogs and social media (ICWSM), pp 295–304

Lopes CV, Maj P, Martins P, Saini V, Yang D, Zitny J, Sajnani H, Vitek J (2017) Déjàvu: a map of
code duplicates on GitHub. Proceedings of the ACM on programming languages 1(OOPSLA):1–28.
https://​doi.​org/​10.​1145/​31339​08

Luhmann N (1987) The unity of the legal system. In: Autopoietic Law – A New Approach to Law and
Society, pp 12–35. https://​doi.​org/​10.​1515/​97831​10876​451.​12

Marcus JS (2012) Structured legislation: toward the synthesis of better law and regulation of electronic
communications. Legisprudence 6(1):1–33. https://​doi.​org/​10.​5235/​17521​46128​00902​534

Markovich R, Hamp G (2015) Elliptical lists in legislative texts. In: Proceedings of the international con-
ference on artificial intelligence and law (ICAIL), pp 192–195. https://​doi.​org/​10.​1145/​27460​90.​
27461​12

Moens MF (2006) Improving access to legal information: how drafting systems help. In: Information
technology and lawyers, pp 119–136, https://​doi.​org/​10.​1007/1-​4020-​4146-2_5

Mousmouti M (2012) Operationalising quality of legislation through the effectiveness test. Legispru-
dence 6(2):191–205. https://​doi.​org/​10.​5235/​17521​46128​03596​686

Noll P (1973) Gesetzgebungslehre. Rowohlt, Hamburg

https://doi.org/10.3233/FAIA200865
https://doi.org/10.1163/157181088x00416
https://doi.org/10.3389/fphy.2021.658463
https://doi.org/10.1145/2746090.2746095
https://doi.org/10.1007/s10506-021-09283-7
https://doi.org/10.5555/1565610.1565621
https://doi.org/10.5555/1565610.1565621
https://doi.org/10.1038/s41598-020-73623-x
https://doi.org/10.1145/2514601.2514627
https://doi.org/10.1007/s10506-015-9172-z
https://doi.org/10.1007/s10506-015-9172-z
https://doi.org/10.1145/3133908
https://doi.org/10.1515/9783110876451.12
https://doi.org/10.5235/175214612800902534
https://doi.org/10.1145/2746090.2746112
https://doi.org/10.1145/2746090.2746112
https://doi.org/10.1007/1-4020-4146-2_5
https://doi.org/10.5235/175214612803596686

	 C. Coupette et al.

1 3

Opdyke WF, Johnson RE (1990) Refactoring: an aid in designing application frameworks and evolving
object-oriented systems. In: Proceedings of the symposium on object-oriented programming empha-
sizing practical applications (SOOPPA)

Ray B, Posnett D, Devanbu P, Filkov V (2017) A large-scale study of programming languages and code
quality in GitHub. Commun ACM 60(10):91–100

Raz J (1970/1980) The concept of a legal system
Robbins IP (2017) And/or and the proper use of legal language. Maryland Law Rev 77(2):311–337
Sartor G (2008) Open management of legislative documents. In: Stefanou C, Xanthaki H (eds) Drafting

legislation. Ashgate publishing, Farnham, pp 259–285
Saxon CS (1982) Computer-aided drafting of legal documents. Am Bar Found Res J 7(3):685–754
Sharma T, Spinellis D (2018) A survey on software smells. J Sys Softw 138:158–173. https://​doi.​org/​10.​

1016/j.​jss.​2017.​12.​034
Speicher D (2020) Did JHotDraw respect the law of good style? - a deep dive into the nature of false posi-

tives of bad code smells. Art Sci Eng Program 4:14:1–14:81,https://​doi.​org/​10.​22152/​progr​amming-​
journ​al.​org/​2020/4/​14

Stamelos I, Angelis L, Oikonomou A, Bleris GL (2002) Code quality analysis in open source software
development. Inf Syst J 12(1):43–60. https://​doi.​org/​10.​1046/j.​1365-​2575.​2002.​00117.x

Sugisaki K (2016) Towards data-driven style checking: an example for law texts. In: Proceedings of the
conference on legal knowledge and information systems (JURIX), pp 93–100. https://​doi.​org/​10.​
3233/​978-1-​61499-​726-9-​93

Tufano M, Palomba F, Bavota G, Oliveto R, Di Penta M, De Lucia A, Poshyvanyk D (2015) When and
why your code starts to smell bad. In: Proceedings of the international conference on software engi-
neering (ICSE), pp 403–414. https://​doi.​org/​10.​1109/​icse.​2015.​59

van Lochem P, Westerman P (2010) Rules on rulemaking introduction. Legisprudence 4(2):107–109.
https://​doi.​org/​10.​1080/​17521​467.​2010.​11424​704

Vreeken J, Van Leeuwen M, Siebes A (2011) Krimp: mining itemsets that compress. Data Min Knowl
Discov 23(1):169–214. https://​doi.​org/​10.​1007/​s10618-​010-​0202-x

Wintgens LJ (1999) To follow a rule as a legislation - some observations from a legisprudential perspec-
tive. Rechtstheorie 30(1):11–46

Xanthaki H (2010) Drafting manuals and quality in legislation: positive contribution towards certainty in
the law or impediment to the necessity for dynamism of rules? Legisprudence 4(2):111–128. https://​
doi.​org/​10.​1080/​17521​467.​2010.​11424​705

Xanthaki H (2011) Quality of legislation: an achievable universal concept or a utopian pursuit? In: Qual-
ity of legislation - principles and instruments: proceedings of the congress of the international asso-
ciation of legislation (IAL), pp 75–85

Xanthaki H (2014) Drafting legislation: art and technology of rules for regulation. Bloomsbury Publish-
ing, London

Yamashita A (2013) How good are code smells for evaluating software maintainability? Results from a
comparative case study. In: Proceedings of the international conference on software maintenance
(ICSM), pp 566–571. https://​doi.​org/​10.​1109/​icsm.​2013.​97

Yu Y, Yin G, Wang H, Wang T (2014) Exploring the patterns of social behavior in GitHub. In: Proceed-
ings of the international workshop on crowd-based software development methods and technologies
(CrowdSoft), pp 31–36. https://​doi.​org/​10.​1145/​26665​39.​26665​71

Ziegler P (1989) The status of normalized drafting: the need for theory building and empirical verifica-
tion. Osgoode Hall Law J 27(2):337–358

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1016/j.jss.2017.12.034
https://doi.org/10.1016/j.jss.2017.12.034
https://doi.org/10.22152/programming-journal.org/2020/4/14
https://doi.org/10.22152/programming-journal.org/2020/4/14
https://doi.org/10.1046/j.1365-2575.2002.00117.x
https://doi.org/10.3233/978-1-61499-726-9-93
https://doi.org/10.3233/978-1-61499-726-9-93
https://doi.org/10.1109/icse.2015.59
https://doi.org/10.1080/17521467.2010.11424704
https://doi.org/10.1007/s10618-010-0202-x
https://doi.org/10.1080/17521467.2010.11424705
https://doi.org/10.1080/17521467.2010.11424705
https://doi.org/10.1109/icsm.2013.97
https://doi.org/10.1145/2666539.2666571

	Law Smells
	Abstract
	1 Introduction
	2 Related work
	3 Theory: What are law smells?
	3.1 Definition
	3.2 Examples
	3.2.1 Duplicated phrase
	3.2.2 Long element
	3.2.3 Ambiguous syntax
	3.2.4 Large reference tree
	3.2.5 Natural language obsession

	3.3 Taxonomy
	3.3.1 Distinctions
	3.3.2 Details

	4 Methods: How do we detect law smells?
	4.1 Assumptions
	4.2 Tools
	4.3 Examples
	4.3.1 Duplicated phrase
	4.3.2 Long element
	4.3.3 Ambiguous syntax
	4.3.4 Large reference tree
	4.3.5 Natural language obsession

	5 Practice: What law smells exist in the wild?
	5.1 Duplicated phrase
	5.2 Long element
	5.3 Ambiguous syntax
	5.4 Large reference tree
	5.5 Natural language obsession

	6 Discussion
	7 Conclusion
	References

